

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/hyperledger-archive/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/hyperledger-archive/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  The set of compose-consensus-4 files can be used with docker-compose to create a network of validating peers primarily for use in testing and development of consensus protocols.

6 Docker containers are created and linked such that the containers can communicate with each other using hostnames. Currently, the entire network runs on one physical machine inside a Vagrant box. The containers created are:


	obcca (obcpeer_obcca_1) - the obc-ca server

	cli (obcpeer_cli_1) - you can attach to this container and issue CLI or REST API commands

	vp0 (obcpeer_vp0_1), vp1 (obcpeer_vp1_1), vp2 (obcpeer_vp2_1), vp3 (obcpeer_vp3_1) - 4 validating peers all running the same consensus protocol ( this is customizable by specifying different docker-compose files. See below. )
The first name is the hostname of the container. The name in parenthesis is the container name automatically assigned by Docker.



Note: When you deploy a chaincode, each peer will create another Docker container.

Unless otherwise noted, you are at $GOPATH/src/github.com/openchain/obc-peer


Issues

This is what is not working right


	cannot create a directory. Specifically when I run obcpeer login xxx . It says cannot create /var/openchain/production/client. I get around it by creating the directory manually and redoing the command. You might not see this error, especially if you’ve run obc-peer before. This will be fixed in a separate pull request.






The infiniteloop.sh shell script

We use the cli container as the spot to run the client and issue CLI or REST API calls. In order for the container to stay up until we connect to it, we need to have it start and wait. infiniteloop.sh is just an infinite echo/sleep loop that keeps the container up until we can do a Docker exec to it.




Manual Configuration


	modify openchain.yaml to point to the obc-ca server



# PKI member services properties
pki:
    eca:
        paddr: obcca:50051
    tca:
        paddr: obcca:50051
    tlsca:
        paddr: obcca:50051






	Modify obc-ca/obcca.yaml and define enough users. We need user IDs for cli,vp0, vp1, vp2 and vp3. Make sure you specify the roles as described in the SandboxSetup [https://github.com/openblockchain/obc-docs/blob/master/api/SandboxSetup.md] document.






Create Docker images for the obc-peer server and the obc-ca server.

From $GOPATH/src/github.com/openchain/obc-peer , create the obc-peer Docker image by running command

docker build -t openchain-peer .





then create the obc-ca Docker image by running command

docker build -t obcca -f obc-ca/Dockerfile .





You can verify that the images have been created and are available by running command

docker images








Run docker-compose to create the network and start all the containers

Rename or backup file docker-compose.yml then copy or rename file compose-consensus-4.yml into file docker-compose.yml

cp compose-consensus-4.yml docker-compose.yml





(This is necessary because Docker requires the first file to be docker-compose.yml and we are not using the original docker-compose.yml file).
Then start up the network by running command

docker-compose -f docker-compose.yml -f compose-consensus-4-links.yml -f compose-consensus-4-sieve.yml up --force-recreate -d





if you want to run pbft sieve, batch or classic, specify the appropriate compose-consensus-4-(batch or classic or sieve).yml file.

The –force-recreate option tells Docker to recreate all the containers.
The -d option runs the containers as background processes. If you do not set this option, the log output of all containers go to your terminal.




Connect to the cli container and run your tests

From another Vagrant terminal, run this command

docker exec -it obcpeer_cli_1 bash





You’ll get a bash prompt inside the container. From here, you can issue any CLI or REST API command. When you are done, run command

exit





which returns out out of the obcpeer_cli_1 container. Note that the container is still running.




More useful Docker commands


	show all containers in the docker-compose group



docker-compose ps






	stop all the docker-compose containers



docker-compose stop






	delete all the docker-compose containers



docker-compose rm






	attach to the console of a container



docker attach --sig-proxy=false container_name





this is the console for the output of the command the container started with, e.g. where obc-peer outputs its log records.
Type ^P^Q to exit ( this works intermittently ). If –sig-proxy=true, the container stops when you exit)


	get the log of a container



docker logs container_name





best to redirect to a file. Otherwise, it just prints to your stdout.


	show all containers in the system



docker ps -a





the -a option includes the inactive containers


	list all Docker images



docker images






	delete a Docker image



docker rmi imagename1 imagename2 ...









          

      

      

    

  

    
      
          
            
  
Notice regarding the Linux Foundation’s Hyperledger project

The openblockchain project is IBM’s proposed contribution to the Linux Foundation’s Hyperledger [https://www.hyperledger.org/] project. We have made it available as open source to enable others to explore our architecture and design. IBM’s intention is to engage rigorously in the Linux Foundation’s Hyperledger [https://www.hyperledger.org/] project as the community establishes itself, and decides on a code base. Once established, we will transition our development focus to the Hyperledger [https://www.hyperledger.org/] effort, and this code will be maintained as needed for IBM’s use.

While we invite contribution to the openblockchain project, we believe that the broader blockchain community’s focus should be the Hyperledger [https://www.hyperledger.org/] project.




Openchain - Peer


Overview

This project contains the core blockchain fabric.




Building the project

Assuming you have followed the development environment getting started instructions [https://github.com/openblockchain/obc-docs/blob/master/dev-setup/devenv.md]

To access your VM, run

vagrant ssh





From within the VM, follow these additional steps.


Go build

cd $GOPATH/src/github.com/openblockchain/obc-peer
go build










Run

To see what commands are available, simply execute the following command:

cd $GOPATH/src/github.com/openblockchain/obc-peer
./obc-peer





You should see some output similar to below (NOTE: rootcommand below is hardcoded in the main.go. Current build will actually create an obc-peer executable file).

    Usage:
      obc-peer [command]

    Available Commands:
      peer        Run obc peer.
      status      Status of the obc peer.
      stop        Stops the obc peer.
      chaincode    Compiles the specified chaincode.
      help        Help about any command

    Flags:
      -h, --help[=false]: help for openchain


    Use "obc-peer [command] --help" for more information about a command.





The peer command will run peer process. You can then use the other commands to interact with this peer process. For example, status will show the peer status.




Test


Unit Tests

To run all unit tests, in one window, run ./obc-peer peer. In a second window

cd $GOPATH/src/github.com/openblockchain/obc-peer
go test -timeout=20m $(go list github.com/openblockchain/obc-peer/... | grep -v /vendor/)





Note that the first time the tests are run, they can take some time due to the need to download a docker image that is about 1GB in size. This is why the timeout flag is added to the above command.

To run a specific test use the -run RE flag where RE is a regular expression that matches the test name. To run tests with verbose output use the -v flag. For example, to run TestGetFoo function, change to the directory containing the foo_test.go and enter:

go test -test.v -run=TestGetFoo








Behave Tests

OBC also has Behave [http://pythonhosted.org/behave/] tests that will setup networks of peers with different security and consensus configurations and verify that transactions run properly. To run these tests

cd $GOPATH/src/github.com/openblockchain/obc-peer/openchain/peer/bddtests
behave





Note, you must run the unit tests first to build the necessary Peer and OBCCA docker images. These images can also be individually built using the commands

go test github.com/openblockchain/obc-peer/openchain/container -run=BuildImage_Peer
go test github.com/openblockchain/obc-peer/openchain/container -run=BuildImage_Obcca










Writing Chaincode

Since chaincode is written in Go language, you can set up the environment to accommodate the rapid edit-compile-run of your chaincode. Follow the instructions on the Sandbox Setup [https://github.com/openblockchain/obc-docs/blob/master/api/SandboxSetup.md] page, which allows you to run your chaincode off the blockchain.




Setting Up a Network

To set up an Openchain network of several validating peers, follow the instructions on the Devnet Setup [https://github.com/openblockchain/obc-docs/blob/master/dev-setup/devnet-setup.md] page. This network leverage Docker to manage multiple instances of validating peer on the same machine, allowing you to quickly test your chaincode.




Working with CLI, REST, and Node.js

When you are ready to start interacting with the Openchain peer node through the available APIs and packages, follow the instructions on the API Documentation [https://github.com/openblockchain/obc-docs/blob/master/api/Openchain%20API.md] page.




Configuration

Configuration utilizes the viper [https://github.com/spf13/viper] and cobra [https://github.com/spf13/cobra] libraries.

There is an openchain.yaml file that contains the configuration for the peer process. Many of the configuration settings can be overridden at the command line by setting ENV variables that match the configuration setting, but by prefixing the tree with ‘OPENCHAIN_‘. For example, logging level manipulation through the environment is shown below:

OPENCHAIN_PEER_LOGGING_LEVEL=CRITICAL ./obc-peer








Logging

Logging utilizes the go-logging [https://github.com/op/go-logging] library.

The available log levels in order of increasing verbosity are: CRITICAL | ERROR | WARNING | NOTICE | INFO | DEBUG

See [specific logging control] (https://github.com/openblockchain/obc-docs/blob/master/dev-setup/logging-control.md) when running OBC.




Generating grpc code

If you modify ant .proto files, run the following command to generate new .pb.go files.

/openchain/obc-dev-env/compile_protos.sh








Adding or updating a Go packages

Openchain uses the Go 1.5 Vendor Experiment [https://docs.google.com/document/d/1Bz5-UB7g2uPBdOx-rw5t9MxJwkfpx90cqG9AFL0JAYo/edit] for package management. This means that all required packages reside in the /vendor folder within the obc-peer project. This is enabled because the GO15VENDOREXPERIMENT environment variable is set to 1 in the Vagrant environment. Go will use packages in this folder instead of the GOPATH when go install or go build is run. To manage the packages in the /vendor folder, we use Govendor [https://github.com/kardianos/govendor]. This is installed in the Vagrant environment. The following commands can be used for package management.

# Add external packages.
govendor add +external

# Add a specific package.
govendor add github.com/kardianos/osext

# Update vendor packages.
govendor update +vendor

# Revert back to normal GOPATH packages.
govendor remove +vendor

# List package.
govendor list








Building outside of Vagrant

This is not recommended, however some users may wish to build Openchain outside of Vagrant if they use an editor with built in Go tooling. The instructions are


	Follow all steps required to setup and run a Vagrant image




	Make you you have Go 1.5.1 [https://golang.org/] or later installed

	Set the GO15VENDOREXPERIMENT environmental variable to 1. export GO15VENDOREXPERIMENT=1

	Set the maximum number of open files to 10000 or greater for your OS

	Install RocksDB [https://github.com/facebook/rocksdb/blob/master/INSTALL.md] version 4.1

	Run the following commands replacing /opt/rocksdb with the path where you installed RocksDB:



cd $GOPATH/src/github.com/openblockchain/obc-peer
CGO_CFLAGS="-I/opt/rocksdb/include" CGO_LDFLAGS="-L/opt/rocksdb -lrocksdb -lstdc++ -lm -lz -lbz2 -lsnappy" go install






	Make sure that the Docker daemon initialization includes the options



-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock






	Be aware that the Docker bridge (the OPENCHAIN_VM_ENDPOINT) may not come
up at the IP address currently assumed by the test environment
(172.17.0.1). Use ifconfig or ip addr to find the docker bridge.









          

      

      

    

  

    
      
          
            
  
How to contribute

We definitely welcome patches and contribution to grpc! Here is some guideline
and information about how to do so.


Getting started


Legal requirements

In order to protect both you and ourselves, you will need to sign the
Contributor License Agreement [https://cla.developers.google.com/clas].




Filing Issues

When filing an issue, make sure to answer these five questions:


	What version of Go are you using (go version)?

	What operating system and processor architecture are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?






Contributing code

Unless otherwise noted, the Go source files are distributed under the BSD-style license found in the LICENSE file.









          

      

      

    

  

    
      
          
            
  #gRPC-Go

[image: Build Status] [https://travis-ci.org/grpc/grpc-go] [image: GoDoc] [https://godoc.org/google.golang.org/grpc]

The Go implementation of gRPC [http://www.grpc.io/]: A high performance, open source, general RPC framework that puts mobile and HTTP/2 first. For more information see the gRPC Quick Start [http://www.grpc.io/docs/] guide.


Installation

To install this package, you need to install Go 1.4 or above and setup your Go workspace on your computer. The simplest way to install the library is to run:

$ go get google.golang.org/grpc








Prerequisites

This requires Go 1.4 or above.




Constraints

The grpc package should only depend on standard Go packages and a small number of exceptions. If your contribution introduces new dependencies which are NOT in the list [http://godoc.org/google.golang.org/grpc?imports], you need a discussion with gRPC-Go authors and consultants.




Documentation

See API documentation [https://godoc.org/google.golang.org/grpc] for package and API descriptions and find examples in the examples directory.




Status

Beta release





          

      

      

    

  

    
      
          
            
  
YAML support for the Go language


Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.




Compatibility

The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.




Installation and usage

The import path for the package is gopkg.in/yaml.v2.

To install it, run:

go get gopkg.in/yaml.v2








API documentation

If opened in a browser, the import path itself leads to the API documentation:


	https://gopkg.in/yaml.v2






API stability

The package API for yaml v2 will remain stable as described in gopkg.in [https://gopkg.in].




License

The yaml package is licensed under the LGPL with an exception that allows it to be linked statically. Please see the LICENSE file for details.




Example

package main

import (
        "fmt"
        "log"

        "gopkg.in/yaml.v2"
)

var data = `
a: Easy!
b:
  c: 2
  d: [3, 4]
`

type T struct {
        A string
        B struct{C int; D []int ",flow"}
}

func main() {
        t := T{}
    
        err := yaml.Unmarshal([]byte(data), &t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t:\n%v\n\n", t)
    
        d, err := yaml.Marshal(&t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t dump:\n%s\n\n", string(d))
    
        m := make(map[interface{}]interface{})
    
        err = yaml.Unmarshal([]byte(data), &m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m:\n%v\n\n", m)
    
        d, err = yaml.Marshal(&m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m dump:\n%s\n\n", string(d))
}





This example will generate the following output:

--- t:
{Easy! {2 [3 4]}}

--- t dump:
a: Easy!
b:
  c: 2
  d: [3, 4]


--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]

--- m dump:
a: Easy!
b:
  c: 2
  d:
  - 3
  - 4











          

      

      

    

  

    
      
          
            
  
mousetrap

mousetrap is a tiny library that answers a single question.

On a Windows machine, was the process invoked by someone double clicking on
the executable file while browsing in explorer?


Motivation

Windows developers unfamiliar with command line tools will often “double-click”
the executable for a tool. Because most CLI tools print the help and then exit
when invoked without arguments, this is often very frustrating for those users.

mousetrap provides a way to detect these invocations so that you can provide
more helpful behavior and instructions on how to run the CLI tool. To see what
this looks like, both from an organizational and a technical perspective, see
https://inconshreveable.com/09-09-2014/sweat-the-small-stuff/




The interface

The library exposes a single interface:

func StartedByExplorer() (bool)











          

      

      

    

  

    
      
          
            
  
gorocksdb, a Go wrapper for RocksDB

[image: Build Status] [https://travis-ci.org/tecbot/gorocksdb] [image: GoDoc] [http://godoc.org/github.com/tecbot/gorocksdb]


Building

You’ll need the shared library build of
RocksDB [https://github.com/facebook/rocksdb] installed on your machine, simply run:

make shared_lib





Now, if you build RocksDB you can install gorocksdb:

CGO_CFLAGS="-I/path/to/rocksdb/include" \
CGO_LDFLAGS="-L/path/to/rocksdb -lrocksdb -lstdc++ -lm -lz -lbz2 -lsnappy" \
  go get github.com/tecbot/gorocksdb











          

      

      

    

  

    
      
          
            
  
go-sqlite3

[image: Build Status] [https://travis-ci.org/mattn/go-sqlite3]
[image: Coverage Status] [https://coveralls.io/r/mattn/go-sqlite3?branch=master]


Description

sqlite3 driver conforming to the built-in database/sql interface




Installation

This package can be installed with the go get command:

go get github.com/mattn/go-sqlite3





go-sqlite3 is cgo package.
If you want to build your app using go-sqlite3, you need gcc.
However, if you install go-sqlite3 with go install github.com/mattn/go-sqlite3, you don’t need gcc to build your app anymore.




Documentation

API documentation can be found here: http://godoc.org/github.com/mattn/go-sqlite3

Examples can be found under the ./_example directory




FAQ


	Want to build go-sqlite3 with libsqlite3 on my linux.

Use go build --tags "libsqlite3 linux"



	Want to build go-sqlite3 with icu extension.

Use go build --tags "icu"



	Can’t build go-sqlite3 on windows 64bit.


Probably, you are using go 1.0, go1.0 has a problem when it comes to compiling/linking on windows 64bit.
See: https://github.com/mattn/go-sqlite3/issues/27






	Getting insert error while query is opened.


You can pass some arguments into the connection string, for example, a URI.
See: https://github.com/mattn/go-sqlite3/issues/39






	Do you want cross compiling? mingw on Linux or Mac?


See: https://github.com/mattn/go-sqlite3/issues/106
See also: http://www.limitlessfx.com/cross-compile-golang-app-for-windows-from-linux.html






	Want to get time.Time with current locale

Use loc=auto in SQLite3 filename schema like file:foo.db?loc=auto.








License

MIT: http://mattn.mit-license.org/2012

sqlite3-binding.c, sqlite3-binding.h, sqlite3ext.h

The -binding suffix was added to avoid build failures under gccgo.

In this repository, those files are amalgamation code that copied from SQLite3. The license of those codes are depend on the license of SQLite3.




Author

Yasuhiro Matsumoto (a.k.a mattn)







          

      

      

    

  

    
      
          
            
  
gocraft/web [image: GoDoc] [https://godoc.org/github.com/gocraft/web]

gocraft/web is a Go mux and middleware package. We deal with casting and reflection so YOUR code can be statically typed. And we’re fast.


Getting Started

From your GOPATH:

go get github.com/gocraft/web





Add a file server.go - for instance, src/myapp/server.go

package main

import (
    "github.com/gocraft/web"
    "fmt"
    "net/http"
    "strings"
)

type Context struct {
    HelloCount int
}

func (c *Context) SetHelloCount(rw web.ResponseWriter, req *web.Request, next web.NextMiddlewareFunc) {
    c.HelloCount = 3
    next(rw, req)
}

func (c *Context) SayHello(rw web.ResponseWriter, req *web.Request) {
    fmt.Fprint(rw, strings.Repeat("Hello ", c.HelloCount), "World!")
}

func main() {
    router := web.New(Context{}).                   // Create your router
        Middleware(web.LoggerMiddleware).           // Use some included middleware
        Middleware(web.ShowErrorsMiddleware).       // ...
        Middleware((*Context).SetHelloCount).       // Your own middleware!
        Get("/", (*Context).SayHello)               // Add a route
    http.ListenAndServe("localhost:3000", router)   // Start the server!
}





Run the server. It will be available on localhost:3000:

go run src/myapp/server.go








Features


	Super fast and scalable. Added latency is from 3-9μs per request. Routing performance is O(log(N)) in the number of routes.

	Your own contexts. Easily pass information between your middleware and handler with strong static typing.

	Easy and powerful routing. Capture path variables. Validate path segments with regexps. Lovely API.

	Middleware. Middleware can express almost any web-layer feature. We make it easy.

	Nested routers, contexts, and middleware. Your app has an API, and admin area, and a logged out view. Each view needs different contexts and different middleware. We let you express this hierarchy naturally.

	Embrace Go’s net/http package. Start your server with http.ListenAndServe(), and work directly with http.ResponseWriter and http.Request.

	Minimal. The core of gocraft/web is lightweight and minimal. Add optional functionality with our built-in middleware, or write your own middleware.






Performance

Performance is a first class concern. Every update to this package has its performance measured and tracked in BENCHMARK_RESULTS [https://github.com/gocraft/web/blob/master/BENCHMARK_RESULTS].

For minimal ‘hello world’ style apps, added latency is about 3μs. This grows to about 10μs for more complex apps (6 middleware functions, 3 levels of contexts, 150+ routes).

One key design choice we’ve made is our choice of routing algorithm. Most competing libraries use simple O(N) iteration over all routes to find a match. This is fine if you have only a handful of routes, but starts to break down as your app gets bigger. We use a tree-based router which grows in complexity at O(log(N)).




Application Structure


Making your router

The first thing you need to do is make a new router. Routers serve requests and execute middleware.

router := web.New(YourContext{})








Your context

Wait, what is YourContext{} and why do you need it? It can be any struct you want it to be. Here’s an example of one:

type YourContext struct {
  User *User // Assumes you've defined a User type as well
}





Your context can be empty or it can have various fields in it. The fields can be whatever you want - it’s your type! When a new request comes into the router, we’ll allocate an instance of this struct and pass it to your middleware and handlers. This allows, for instance, a SetUser middleware to set a User field that can be read in the handlers.




Routes and handlers

Once you have your router, you can add routes to it. Standard HTTP verbs are supported.

router := web.New(YourContext{})
router.Get("/users", (*YourContext).UsersList)
router.Post("/users", (*YourContext).UsersCreate)
router.Put("/users/:id", (*YourContext).UsersUpdate)
router.Delete("/users/:id", (*YourContext).UsersDelete)
router.Patch("/users/:id", (*YourContext).UsersUpdate)
router.Get("/", (*YourContext).Root)





What is that funny (*YourContext).Root notation? It’s called a method expression. It lets your handlers look like this:

func (c *YourContext) Root(rw web.ResponseWriter, req *web.Request) {
    if c.User != nil {
        fmt.Fprint(rw, "Hello,", c.User.Name)
    } else {
        fmt.Fprint(rw, "Hello, anonymous person")
    }
}





All method expressions do is return a function that accepts the type as the first argument. So your handler can also look like this:

func Root(c *YourContext, rw web.ResponseWriter, req *web.Request) {}





Of course, if you don’t need a context for a particular action, you can also do that:

func Root(rw web.ResponseWriter, req *web.Request) {}





Note that handlers always need to accept two input parameters: web.ResponseWriter, and *web.Request, both of which wrap the standard http.ResponseWriter and *http.Request, respectively.




Middleware

You can add middleware to a router:

router := web.New(YourContext{})
router.Middleware((*YourContext).UserRequired)
// add routes, more middleware





This is what a middleware handler looks like:

func (c *YourContext) UserRequired(rw web.ResponseWriter, r *web.Request, next web.NextMiddlewareFunc) {
    user := userFromSession(r)  // Pretend like this is defined. It reads a session cookie and returns a *User or nil.
    if user != nil {
        c.User = user
        next(rw, r)
    } else {
        rw.Header().Set("Location", "/")
        rw.WriteHeader(http.StatusMovedPermanently)
        // do NOT call next()
    }
}





Some things to note about the above example:


	We set fields in the context for future middleware / handlers to use.

	We can call next(), or not. Not calling next() effectively stops the middleware stack.



Of course, generic middleware without contexts is supported:

func GenericMiddleware(rw web.ResponseWriter, r *web.Request, next web.NextMiddlewareFunc) {
    // ...
}








Nested routers

Nested routers let you run different middleware and use different contexts for different parts of your app. Some common scenarios:


	You want to run an AdminRequired middleware on all your admin routes, but not on API routes. Your context needs a CurrentAdmin field.

	You want to run an OAuth middleware on your API routes. Your context needs an AccessToken field.

	You want to run session handling middleware on ALL your routes. Your context needs a Session field.



Let’s implement that. Your contexts would look like this:

type Context struct {
    Session map[string]string
}

type AdminContext struct {
    *Context
    CurrentAdmin *User
}

type ApiContext struct {
    *Context
    AccessToken string
}





Note that we embed a pointer to the parent context in each subcontext. This is required.

Now that we have our contexts, let’s create our routers:

rootRouter := web.New(Context{})
rootRouter.Middleware((*Context).LoadSession)

apiRouter := rootRouter.Subrouter(ApiContext{}, "/api")
apiRouter.Middleware((*ApiContext).OAuth)
apiRouter.Get("/tickets", (*ApiContext).TicketsIndex)

adminRouter := rootRouter.Subrouter(AdminContext{}, "/admin")
adminRouter.Middleware((*AdminContext).AdminRequired)

// Given the path namesapce for this router is "/admin", the full path of this route is "/admin/reports"
adminRouter.Get("/reports", (*AdminContext).Reports)





Note that each time we make a subrouter, we need to supply the context as well as a path namespace. The context CAN be the same as the parent context, and the namespace CAN just be “/” for no namespace.




Request lifecycle

The following is a detailed account of the request lifecycle:


	A request comes in. Yay! (follow along in router_serve.go if you’d like)

	Wrap the default Go http.ResponseWriter and http.Request in a web.ResponseWriter and web.Request, respectively (via structure embedding).

	Allocate a new root context. This context is passed into your root middleware.

	Execute middleware on the root router. We do this before we find a route!

	After all of the root router’s middleware is executed, we’ll run a ‘virtual’ routing middleware that determines the target route.
	If the there’s no route found, we’ll execute the NotFound handler if supplied. Otherwise, we’ll write a 404 response and start unwinding the root middlware.





	Now that we have a target route, we can allocate the context tree of the target router.

	Start executing middleware on the nested middleware leading up to the final router/route.

	After all middleware is executed, we’ll run another ‘virtual’ middleware that invokes the final handler corresponding to the target route.

	Unwind all middleware calls (if there’s any code after next() in the middleware, obviously that’s going to run at some point).






Capturing path params; regexp conditions

You can capture path variables like this:

router.Get("/suggestions/:suggestion_id/comments/:comment_id")





In your handler, you can access them like this:

func (c *YourContext) Root(rw web.ResponseWriter, req *web.Request) {
    fmt.Fprint(rw, "Suggestion ID:", req.PathParams["suggestion_id"])
    fmt.Fprint(rw, "Comment ID:", req.PathParams["comment_id"])
}





You can also validate the format of your path params with a regexp. For instance, to ensure the ‘ids’ start with a digit:

router.Get("/suggestions/:suggestion_id:\\d.*/comments/:comment_id:\\d.*")





You can match any route past a certain point like this:

router.Get("/suggestions/:suggestion_id/comments/:comment_id/:*")





The path params will contain a “” member with the rest of your path.  It is illegal to add any more paths past the “” path param, as it’s meant to match every path afterwards, in all cases.

For Example:
/suggestions/123/comments/321/foo/879/bar/834

Elicits path params:
* “suggestion_id”: 123,
* “comment_id”: 321,
* “*”: “foo/879/bar/834”

One thing you CANNOT currently do is use regexps outside of a path segment. For instance, optional path segments are not supported - you would have to define multiple routes that both point to the same handler. This design decision was made to enable efficient routing.




Not Found handlers

If a route isn’t found, by default we’ll return a 404 status and render the text “Not Found”.

You can supply a custom NotFound handler on your root router:

router.NotFound((*Context).NotFound)





Your handler can optionally accept a pointer to the root context. NotFound handlers look like this:

func (c *Context) NotFound(rw web.ResponseWriter, r *web.Request) {
    rw.WriteHeader(http.StatusNotFound) // You probably want to return 404. But you can also redirect or do whatever you want.
    fmt.Fprintf(rw, "My Not Found")     // Render you own HTML or something!
}








OPTIONS handlers

If an OPTIONS request [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing#Preflight_example] is made and routes with other methods are found for the requested path, then by default we’ll return an empty response with an appropriate Access-Control-Allow-Methods header.

You can supply a custom OPTIONS handler on your root router:

router.OptionsHandler((*Context).OptionsHandler)





Your handler can optionally accept a pointer to the root context. OPTIONS handlers look like this:

func (c *Context) OptionsHandler(rw web.ResponseWriter, r *web.Request, methods []string) {
    rw.Header().Add("Access-Control-Allow-Methods", strings.Join(methods, ", "))
    rw.Header().Add("Access-Control-Allow-Origin", "*")
}








Error handlers

By default, if there’s a panic in middleware or a handler, we’ll return a 500 status and render the text “Application Error”.

If you use the included middleware web.ShowErrorsMiddleware, a panic will result in a pretty backtrace being rendered in HTML. This is great for development.

You can also supply a custom Error handler on any router (not just the root router):

router.Error((*Context).Error)





Your handler can optionally accept a pointer to its corresponding context. Error handlers look like this:

func (c *Context) Error(rw web.ResponseWriter, r *web.Request, err interface{}) {
    rw.WriteHeader(http.StatusInternalServerError)
    fmt.Fprint(w, "Error", err)
}








Included middleware

We ship with three basic pieces of middleware: a logger, an exception printer, and a static file server. To use them:

router := web.New(Context{})
router.Middleware(web.LoggerMiddleware).
    Middleware(web.ShowErrorsMiddleware).
    Middleware(web.StaticMiddleware("public")) // "public" is a directory to serve files from.





NOTE: You might not want to use web.ShowErrorsMiddleware in production. You can easily do something like this:

router := web.New(Context{})
router.Middleware(web.LoggerMiddleware)
if MyEnvironment == "development" {
    router.Middleware(web.ShowErrorsMiddleware)
}
// ...








Starting your server

Since web.Router implements http.Handler (eg, ServeHTTP(ResponseWriter, *Request)), you can easily plug it in to the standard Go http machinery:

router := web.New(Context{})
// ... Add routes and such.
http.ListenAndServe("localhost:8080", router)








Rendering responses

So now you routed a request to a handler. You have a web.ResponseWriter (http.ResponseWriter) and web.Request (http.Request). Now what?

// You can print to the ResponseWriter!
fmt.Fprintf(rw, "<html>I'm a web page!</html>")





This is currently where the implementation of this library stops. I recommend you read the documentation of net/http [http://golang.org/pkg/net/http/].






Extra Middlware

This package is going to keep the built-in middlware simple and lean. Extra middleware can be found across the web:


	https://github.com/opennota/json-binding - mapping JSON request into a struct

	https://github.com/corneldamian/json-binding - mapping JSON request into a struct and response to json



If you’d like me to link to your middleware, let me know with a pull request to this README.




gocraft

gocraft offers a toolkit for building web apps. Currently these packages are available:


	gocraft/web [https://github.com/gocraft/web] - Go Router + Middleware. Your Contexts.

	gocraft/dbr [https://github.com/gocraft/dbr] - Additions to Go’s database/sql for super fast performance and convenience.

	gocraft/health [https://github.com/gocraft/health] -  Instrument your web apps with logging and metrics.



These packages were developed by the engineering team [https://eng.uservoice.com] at UserVoice [https://www.uservoice.com] and currently power much of its infrastructure and tech stack.




Thanks & Authors

I use code/got inspiration from these excellent libraries:


	Revel [https://github.com/robfig/revel] - pathtree routing.

	Traffic [https://github.com/pilu/traffic] - inspiration, show errors middleware.

	Martini [https://github.com/codegangsta/martini] - static file serving.

	gorilla/mux [http://www.gorillatoolkit.org/pkg/mux] - inspiration.



Authors:


	Jonathan Novak – https://github.com/cypriss

	Sponsored by UserVoice [https://eng.uservoice.com]









          

      

      

    

  

    
      
          
            
  
Overview [image: Build Status] [https://travis-ci.org/magiconair/properties]

properties is a Go library for reading and writing properties files.

It supports reading from multiple files and Spring style recursive property
expansion of expressions like ${key} to their corresponding value.
Value expressions can refer to other keys like in ${key} or to
environment variables like in ${USER}.
Filenames can also contain environment variables like in
/home/${USER}/myapp.properties.

Comments and the order of keys are preserved. Comments can be modified
and can be written to the output.

The properties library supports both ISO-8859-1 and UTF-8 encoded data.

Starting from version 1.3.0 the behavior of the MustXXX() functions is
configurable by providing a custom ErrorHandler function. The default has
changed from panic to log.Fatal but this is configurable and custom
error handling functions can be provided. See the package documentation for
details.


Getting Started

import "github.com/magiconair/properties"

func main() {
    p := properties.MustLoadFile("${HOME}/config.properties", properties.UTF8)
    host := p.MustGetString("host")
    port := p.GetInt("port", 8080)
}





Read the full documentation on GoDoc [https://godoc.org/github.com/magiconair/properties]   [image: GoDoc] [https://godoc.org/github.com/magiconair/properties]




Installation and Upgrade

$ go get -u github.com/magiconair/properties





For testing and debugging you need the go-check [https://github.com/go-check/check] library

$ go get -u gopkg.in/check.v1








History




v1.5.5, 31 Jul 2015


	Pull Request #6 [https://github.com/magiconair/properties/pull/6]: Add Delete [http://godoc.org/github.com/magiconair/properties#Properties.Delete] method to remove keys including comments. (@gerbenjacobs)






v1.5.4, 23 Jun 2015


	Issue #5 [https://github.com/magiconair/properties/issues/5]: Allow disabling of property expansion DisableExpansion [http://godoc.org/github.com/magiconair/properties#Properties.DisableExpansion]. When property expansion is disabled Properties become a simple key/value store and don’t check for circular references.






v1.5.3, 02 Jun 2015


	Issue #4 [https://github.com/magiconair/properties/issues/4]: Maintain key order in Filter() [http://godoc.org/github.com/magiconair/properties#Properties.Filter], FilterPrefix() [http://godoc.org/github.com/magiconair/properties#Properties.FilterPrefix] and FilterRegexp() [http://godoc.org/github.com/magiconair/properties#Properties.FilterRegexp]






v1.5.2, 10 Apr 2015


	Issue #3 [https://github.com/magiconair/properties/issues/3]: Don’t print comments in WriteComment() [http://godoc.org/github.com/magiconair/properties#Properties.WriteComment] if they are all empty

	Add clickable links to README






v1.5.1, 08 Dec 2014


	Added GetParsedDuration() [http://godoc.org/github.com/magiconair/properties#Properties.GetParsedDuration] and MustGetParsedDuration() [http://godoc.org/github.com/magiconair/properties#Properties.MustGetParsedDuration] for values specified compatible with
time.ParseDuration() [http://golang.org/pkg/time/#ParseDuration].






v1.5.0, 18 Nov 2014


	Added support for single and multi-line comments (reading, writing and updating)

	The order of keys is now preserved

	Calling Set() [http://godoc.org/github.com/magiconair/properties#Properties.Set] with an empty key now silently ignores the call and does not create a new entry

	Added a MustSet() [http://godoc.org/github.com/magiconair/properties#Properties.MustSet] method

	Migrated test library from launchpad.net/gocheck to gopkg.in/check.v1 [http://gopkg.in/check.v1]






v1.4.2, 15 Nov 2014


	Issue #2 [https://github.com/magiconair/properties/issues/2]: Fixed goroutine leak in parser which created two lexers but cleaned up only one






v1.4.1, 13 Nov 2014


	Issue #1 [https://github.com/magiconair/properties/issues/1]: Fixed bug in Keys() method which returned an empty string






v1.4.0, 23 Sep 2014


	Added Keys() [http://godoc.org/github.com/magiconair/properties#Properties.Keys] to get the keys

	Added Filter() [http://godoc.org/github.com/magiconair/properties#Properties.Filter], FilterRegexp() [http://godoc.org/github.com/magiconair/properties#Properties.FilterRegexp] and FilterPrefix() [http://godoc.org/github.com/magiconair/properties#Properties.FilterPrefix] to get a subset of the properties






v1.3.0, 18 Mar 2014


	Added support for time.Duration

	Made MustXXX() failure behavior configurable (log.Fatal, panic, custom)

	Changed default of MustXXX() failure from panic to log.Fatal






v1.2.0, 05 Mar 2014


	Added MustGet... functions

	Added support for int and uint with range checks on 32 bit platforms






v1.1.0, 20 Jan 2014


	Renamed from goproperties to properties

	Added support for expansion of environment vars in
filenames and value expressions

	Fixed bug where value expressions were not at the
start of the string






v1.0.0, 7 Jan 2014


	Initial release






License

2 clause BSD license. See LICENSE [https://github.com/magiconair/properties/blob/master/LICENSE] file for details.




ToDo


	Dump contents with passwords and secrets obscured









          

      

      

    

  

    
      
          
            
  [image: wercker status] [https://app.wercker.com/project/bykey/517d98fe7a8da9bf9a6060e7906c0d17]
[image: Coverage Status] [https://coveralls.io/r/looplab/fsm]
[image: GoDoc] [https://godoc.org/github.com/looplab/fsm]


FSM for Go

FSM is a finite state machine for Go.

It is heavily based on two FSM implementations:


	Javascript Finite State Machine, https://github.com/jakesgordon/javascript-state-machine

	Fysom for Python, https://github.com/oxplot/fysom (forked at https://github.com/mriehl/fysom)



For API docs and examples see http://godoc.org/github.com/looplab/fsm




Basic Example

From examples/simple.go:

package main

import (
    "fmt"
    "github.com/looplab/fsm"
)

func main() {
    fsm := fsm.NewFSM(
        "closed",
        fsm.Events{
            {Name: "open", Src: []string{"closed"}, Dst: "open"},
            {Name: "close", Src: []string{"open"}, Dst: "closed"},
        },
        fsm.Callbacks{},
    )

    fmt.Println(fsm.Current())

    err := fsm.Event("open")
    if err != nil {
        fmt.Println(err)
    }

    fmt.Println(fsm.Current())

    err = fsm.Event("close")
    if err != nil {
        fmt.Println(err)
    }

    fmt.Println(fsm.Current())
}








Usage as a struct field

From examples/struct.go:

package main

import (
    "fmt"
    "github.com/looplab/fsm"
)

type Door struct {
    To  string
    FSM *fsm.FSM
}

func NewDoor(to string) *Door {
    d := &Door{
        To: to,
    }

    d.FSM = fsm.NewFSM(
        "closed",
        fsm.Events{
            {Name: "open", Src: []string{"closed"}, Dst: "open"},
            {Name: "close", Src: []string{"open"}, Dst: "closed"},
        },
        fsm.Callbacks{
            "enter_state": func(e *fsm.Event) { d.enterState(e) },
        },
    )

    return d
}

func (d *Door) enterState(e *fsm.Event) {
    fmt.Printf("The door to %s is %s\n", d.To, e.Dst)
}

func main() {
    door := NewDoor("heaven")

    err := door.FSM.Event("open")
    if err != nil {
        fmt.Println(err)
    }

    err = door.FSM.Event("close")
    if err != nil {
        fmt.Println(err)
    }
}








License

FSM is licensed under Apache License 2.0

http://www.apache.org/licenses/LICENSE-2.0





          

      

      

    

  

    
      
          
            
  
mapstructure

mapstructure is a Go library for decoding generic map values to structures
and vice versa, while providing helpful error handling.

This library is most useful when decoding values from some data stream (JSON,
Gob, etc.) where you don’t quite know the structure of the underlying data
until you read a part of it. You can therefore read a map[string]interface{}
and use this library to decode it into the proper underlying native Go
structure.


Installation

Standard go get:

$ go get github.com/mitchellh/mapstructure








Usage & Example

For usage and examples see the Godoc [http://godoc.org/github.com/mitchellh/mapstructure].

The Decode function has examples associated with it there.




But Why?!

Go offers fantastic standard libraries for decoding formats such as JSON.
The standard method is to have a struct pre-created, and populate that struct
from the bytes of the encoded format. This is great, but the problem is if
you have configuration or an encoding that changes slightly depending on
specific fields. For example, consider this JSON:

{
  "type": "person",
  "name": "Mitchell"
}





Perhaps we can’t populate a specific structure without first reading
the “type” field from the JSON. We could always do two passes over the
decoding of the JSON (reading the “type” first, and the rest later).
However, it is much simpler to just decode this into a map[string]interface{}
structure, read the “type” key, then use something like this library
to decode it into the proper structure.







          

      

      

    

  

    
      
          
            
  This code provides helper functions for dealing with archive files.



          

      

      

    

  

    
      
          
            
  
(Unreleased)

logrus/core: improve performance of text formatter by 40%
logrus/core: expose LevelHooks type




0.8.2

logrus: fix more Fatal family functions




0.8.1

logrus: fix not exiting on Fatalf and Fatalln




0.8.0

logrus: defaults to stderr instead of stdout
hooks/sentry: add special field for *http.Request
formatter/text: ignore Windows for colors




0.7.3

formatter/*: allow configuration of timestamp layout




0.7.2

formatter/text: Add configuration option for time format (#158)





          

      

      

    

  

    
      
          
            
  
Logrus [image: :walrus:] 

[image: Build Status] [https://travis-ci.org/Sirupsen/logrus] 

[image: godoc reference] [https://godoc.org/github.com/Sirupsen/logrus]

Logrus is a structured logger for Go (golang), completely API compatible with
the standard library logger. Godoc [https://godoc.org/github.com/Sirupsen/logrus]. Please note the Logrus API is not
yet stable (pre 1.0). Logrus itself is completely stable and has been used in
many large deployments. The core API is unlikely to change much but please
version control your Logrus to make sure you aren’t fetching latest master on
every build.

Nicely color-coded in development (when a TTY is attached, otherwise just
plain text):

[image: Colored]

With log.Formatter = new(logrus.JSONFormatter), for easy parsing by logstash
or Splunk:

{"animal":"walrus","level":"info","msg":"A group of walrus emerges from the
ocean","size":10,"time":"2014-03-10 19:57:38.562264131 -0400 EDT"}

{"level":"warning","msg":"The group's number increased tremendously!",
"number":122,"omg":true,"time":"2014-03-10 19:57:38.562471297 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"A giant walrus appears!",
"size":10,"time":"2014-03-10 19:57:38.562500591 -0400 EDT"}

{"animal":"walrus","level":"info","msg":"Tremendously sized cow enters the ocean.",
"size":9,"time":"2014-03-10 19:57:38.562527896 -0400 EDT"}

{"level":"fatal","msg":"The ice breaks!","number":100,"omg":true,
"time":"2014-03-10 19:57:38.562543128 -0400 EDT"}





With the default log.Formatter = new(&log.TextFormatter{}) when a TTY is not
attached, the output is compatible with the
logfmt [http://godoc.org/github.com/kr/logfmt] format:

time="2015-03-26T01:27:38-04:00" level=debug msg="Started observing beach" animal=walrus number=8
time="2015-03-26T01:27:38-04:00" level=info msg="A group of walrus emerges from the ocean" animal=walrus size=10
time="2015-03-26T01:27:38-04:00" level=warning msg="The group's number increased tremendously!" number=122 omg=true
time="2015-03-26T01:27:38-04:00" level=debug msg="Temperature changes" temperature=-4
time="2015-03-26T01:27:38-04:00" level=panic msg="It's over 9000!" animal=orca size=9009
time="2015-03-26T01:27:38-04:00" level=fatal msg="The ice breaks!" err=&{0x2082280c0 map[animal:orca size:9009] 2015-03-26 01:27:38.441574009 -0400 EDT panic It's over 9000!} number=100 omg=true
exit status 1






Example

The simplest way to use Logrus is simply the package-level exported logger:

package main

import (
  log "github.com/Sirupsen/logrus"
)

func main() {
  log.WithFields(log.Fields{
    "animal": "walrus",
  }).Info("A walrus appears")
}





Note that it’s completely api-compatible with the stdlib logger, so you can
replace your log imports everywhere with log "github.com/Sirupsen/logrus"
and you’ll now have the flexibility of Logrus. You can customize it all you
want:

package main

import (
  "os"
  log "github.com/Sirupsen/logrus"
  "github.com/Sirupsen/logrus/hooks/airbrake"
)

func init() {
  // Log as JSON instead of the default ASCII formatter.
  log.SetFormatter(&log.JSONFormatter{})

  // Use the Airbrake hook to report errors that have Error severity or above to
  // an exception tracker. You can create custom hooks, see the Hooks section.
  log.AddHook(airbrake.NewHook("https://example.com", "xyz", "development"))

  // Output to stderr instead of stdout, could also be a file.
  log.SetOutput(os.Stderr)

  // Only log the warning severity or above.
  log.SetLevel(log.WarnLevel)
}

func main() {
  log.WithFields(log.Fields{
    "animal": "walrus",
    "size":   10,
  }).Info("A group of walrus emerges from the ocean")

  log.WithFields(log.Fields{
    "omg":    true,
    "number": 122,
  }).Warn("The group's number increased tremendously!")

  log.WithFields(log.Fields{
    "omg":    true,
    "number": 100,
  }).Fatal("The ice breaks!")

  // A common pattern is to re-use fields between logging statements by re-using
  // the logrus.Entry returned from WithFields()
  contextLogger := log.WithFields(log.Fields{
    "common": "this is a common field",
    "other": "I also should be logged always",
  })

  contextLogger.Info("I'll be logged with common and other field")
  contextLogger.Info("Me too")
}





For more advanced usage such as logging to multiple locations from the same
application, you can also create an instance of the logrus Logger:

package main

import (
  "github.com/Sirupsen/logrus"
)

// Create a new instance of the logger. You can have any number of instances.
var log = logrus.New()

func main() {
  // The API for setting attributes is a little different than the package level
  // exported logger. See Godoc.
  log.Out = os.Stderr

  log.WithFields(logrus.Fields{
    "animal": "walrus",
    "size":   10,
  }).Info("A group of walrus emerges from the ocean")
}








Fields

Logrus encourages careful, structured logging though logging fields instead of
long, unparseable error messages. For example, instead of: log.Fatalf("Failed to send event %s to topic %s with key %d"), you should log the much more
discoverable:

log.WithFields(log.Fields{
  "event": event,
  "topic": topic,
  "key": key,
}).Fatal("Failed to send event")





We’ve found this API forces you to think about logging in a way that produces
much more useful logging messages. We’ve been in countless situations where just
a single added field to a log statement that was already there would’ve saved us
hours. The WithFields call is optional.

In general, with Logrus using any of the printf-family functions should be
seen as a hint you should add a field, however, you can still use the
printf-family functions with Logrus.




Hooks

You can add hooks for logging levels. For example to send errors to an exception
tracking service on Error, Fatal and Panic, info to StatsD or log to
multiple places simultaneously, e.g. syslog.

Logrus comes with built-in hooks. Add those, or your custom hook, in
init:

import (
  log "github.com/Sirupsen/logrus"
  "github.com/Sirupsen/logrus/hooks/airbrake"
  logrus_syslog "github.com/Sirupsen/logrus/hooks/syslog"
  "log/syslog"
)

func init() {
  log.AddHook(airbrake.NewHook("https://example.com", "xyz", "development"))

  hook, err := logrus_syslog.NewSyslogHook("udp", "localhost:514", syslog.LOG_INFO, "")
  if err != nil {
    log.Error("Unable to connect to local syslog daemon")
  } else {
    log.AddHook(hook)
  }
}





| Hook  | Description |
| —– | ———– |
| Airbrake [https://github.com/Sirupsen/logrus/blob/master/hooks/airbrake/airbrake.go] | Send errors to an exception tracking service compatible with the Airbrake API. Uses airbrake-go [https://github.com/tobi/airbrake-go] behind the scenes. |
| Papertrail [https://github.com/Sirupsen/logrus/blob/master/hooks/papertrail/papertrail.go] | Send errors to the Papertrail hosted logging service via UDP. |
| Syslog [https://github.com/Sirupsen/logrus/blob/master/hooks/syslog/syslog.go] | Send errors to remote syslog server. Uses standard library log/syslog behind the scenes. |
| BugSnag [https://github.com/Sirupsen/logrus/blob/master/hooks/bugsnag/bugsnag.go] | Send errors to the Bugsnag exception tracking service. |
| Sentry [https://github.com/Sirupsen/logrus/blob/master/hooks/sentry/sentry.go] | Send errors to the Sentry error logging and aggregation service. |
| Hiprus [https://github.com/nubo/hiprus] | Send errors to a channel in hipchat. |
| Logrusly [https://github.com/sebest/logrusly] | Send logs to Loggly [https://www.loggly.com/] |
| Slackrus [https://github.com/johntdyer/slackrus] | Hook for Slack chat. |
| Journalhook [https://github.com/wercker/journalhook] | Hook for logging to systemd-journald |
| Graylog [https://github.com/gemnasium/logrus-hooks/tree/master/graylog] | Hook for logging to Graylog [http://graylog2.org/] |
| Raygun [https://github.com/squirkle/logrus-raygun-hook] | Hook for logging to Raygun.io [http://raygun.io/] |
| LFShook [https://github.com/rifflock/lfshook] | Hook for logging to the local filesystem |
| Honeybadger [https://github.com/agonzalezro/logrus_honeybadger] | Hook for sending exceptions to Honeybadger |
| Mail [https://github.com/zbindenren/logrus_mail] | Hook for sending exceptions via mail |
| Rollrus [https://github.com/heroku/rollrus] | Hook for sending errors to rollbar |




Level logging

Logrus has six logging levels: Debug, Info, Warning, Error, Fatal and Panic.

log.Debug("Useful debugging information.")
log.Info("Something noteworthy happened!")
log.Warn("You should probably take a look at this.")
log.Error("Something failed but I'm not quitting.")
// Calls os.Exit(1) after logging
log.Fatal("Bye.")
// Calls panic() after logging
log.Panic("I'm bailing.")





You can set the logging level on a Logger, then it will only log entries with
that severity or anything above it:

// Will log anything that is info or above (warn, error, fatal, panic). Default.
log.SetLevel(log.InfoLevel)





It may be useful to set log.Level = logrus.DebugLevel in a debug or verbose
environment if your application has that.




Entries

Besides the fields added with WithField or WithFields some fields are
automatically added to all logging events:


	time. The timestamp when the entry was created.

	msg. The logging message passed to {Info,Warn,Error,Fatal,Panic} after
the AddFields call. E.g. Failed to send event.

	level. The logging level. E.g. info.






Environments

Logrus has no notion of environment.

If you wish for hooks and formatters to only be used in specific environments,
you should handle that yourself. For example, if your application has a global
variable Environment, which is a string representation of the environment you
could do:

import (
  log "github.com/Sirupsen/logrus"
)

init() {
  // do something here to set environment depending on an environment variable
  // or command-line flag
  if Environment == "production" {
    log.SetFormatter(&logrus.JSONFormatter{})
  } else {
    // The TextFormatter is default, you don't actually have to do this.
    log.SetFormatter(&log.TextFormatter{})
  }
}





This configuration is how logrus was intended to be used, but JSON in
production is mostly only useful if you do log aggregation with tools like
Splunk or Logstash.




Formatters

The built-in logging formatters are:


	logrus.TextFormatter. Logs the event in colors if stdout is a tty, otherwise
without colors.


	Note: to force colored output when there is no TTY, set the ForceColors
field to true.  To force no colored output even if there is a TTY  set the
DisableColors field to true





	logrus.JSONFormatter. Logs fields as JSON.



	logrus_logstash.LogstashFormatter. Logs fields as Logstash Events (http://logstash.net).

  logrus.SetFormatter(&logrus_logstash.LogstashFormatter{Type: “application_name"})









Third party logging formatters:


	zalgo [https://github.com/aybabtme/logzalgo]: invoking the P͉̫o̳̼̊w̖͈̰͎e̬͔̭͂r͚̼̹̲ ̫͓͉̳͈ō̠͕͖̚f̝͍̠ ͕̲̞͖͑Z̖̫̤̫ͪa͉̬͈̗l͖͎g̳̥o̰̥̅!̣͔̲̻͊̄ ̙̘̦̹̦.



You can define your formatter by implementing the Formatter interface,
requiring a Format method. Format takes an *Entry. entry.Data is a
Fields type (map[string]interface{}) with all your fields as well as the
default ones (see Entries section above):

type MyJSONFormatter struct {
}

log.SetFormatter(new(MyJSONFormatter))

func (f *JSONFormatter) Format(entry *Entry) ([]byte, error) {
  // Note this doesn't include Time, Level and Message which are available on
  // the Entry. Consult `godoc` on information about those fields or read the
  // source of the official loggers.
  serialized, err := json.Marshal(entry.Data)
    if err != nil {
      return nil, fmt.Errorf("Failed to marshal fields to JSON, %v", err)
    }
  return append(serialized, '\n'), nil
}








Logger as an io.Writer

Logrus can be transformed into an io.Writer. That writer is the end of an io.Pipe and it is your responsibility to close it.

w := logger.Writer()
defer w.Close()

srv := http.Server{
    // create a stdlib log.Logger that writes to
    // logrus.Logger.
    ErrorLog: log.New(w, "", 0),
}





Each line written to that writer will be printed the usual way, using formatters
and hooks. The level for those entries is info.




Rotation

Log rotation is not provided with Logrus. Log rotation should be done by an
external program (like logrotate(8)) that can compress and delete old log
entries. It should not be a feature of the application-level logger.







          

      

      

    

  

    
      
          
            
  
sanitized_anchor_name [image: Build Status] [https://travis-ci.org/shurcooL/sanitized_anchor_name] [image: GoDoc] [https://godoc.org/github.com/shurcooL/sanitized_anchor_name]

Package sanitized_anchor_name provides a func to create sanitized anchor names.

Its logic can be reused by multiple packages to create interoperable anchor names and links to those anchors.

At this time, it does not try to ensure that generated anchor names are unique, that responsibility falls on the caller.


Installation

go get -u github.com/shurcooL/sanitized_anchor_name








Example

anchorName := sanitized_anchor_name.Create("This is a header")

fmt.Println(anchorName)

// Output:
// this-is-a-header








License


	MIT License [http://opensource.org/licenses/mit-license.php]









          

      

      

    

  

    
      
          
            
  
Go support for Protocol Buffers

Google’s data interchange format.
Copyright 2010 The Go Authors.
https://github.com/golang/protobuf

This package and the code it generates requires at least Go 1.4.

This software implements Go bindings for protocol buffers.  For
information about protocol buffers themselves, see
https://developers.google.com/protocol-buffers/


Installation

To use this software, you must:


	Install the standard C++ implementation of protocol buffers from
https://developers.google.com/protocol-buffers/

	Of course, install the Go compiler and tools from
https://golang.org/
See
https://golang.org/doc/install
for details or, if you are using gccgo, follow the instructions at
https://golang.org/doc/install/gccgo

	Grab the code from the repository and install the proto package.
The simplest way is to run go get -u github.com/golang/protobuf/{proto,protoc-gen-go}.
The compiler plugin, protoc-gen-go, will be installed in $GOBIN,
defaulting to $GOPATH/bin.  It must be in your $PATH for the protocol
compiler, protoc, to find it.



This software has two parts: a ‘protocol compiler plugin’ that
generates Go source files that, once compiled, can access and manage
protocol buffers; and a library that implements run-time support for
encoding (marshaling), decoding (unmarshaling), and accessing protocol
buffers.

There is support for gRPC in Go using protocol buffers.
See the note at the bottom of this file for details.

There are no insertion points in the plugin.




Using protocol buffers with Go

Once the software is installed, there are two steps to using it.
First you must compile the protocol buffer definitions and then import
them, with the support library, into your program.

To compile the protocol buffer definition, run protoc with the –go_out
parameter set to the directory you want to output the Go code to.

protoc --go_out=. *.proto





The generated files will be suffixed .pb.go.  See the Test code below
for an example using such a file.

The package comment for the proto library contains text describing
the interface provided in Go for protocol buffers. Here is an edited
version.

==========

The proto package converts data structures to and from the
wire format of protocol buffers.  It works in concert with the
Go source code generated for .proto files by the protocol compiler.

A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:


	Names are turned from camel_case to CamelCase for export.

	There are no methods on v to set fields; just treat
them as structure fields.

	There are getters that return a field’s value if set,
and return the field’s default value if unset.
The getters work even if the receiver is a nil message.

	The zero value for a struct is its correct initialization state.
All desired fields must be set before marshaling.

	A Reset() method will restore a protobuf struct to its zero state.

	Non-repeated fields are pointers to the values; nil means unset.
That is, optional or required field int32 f becomes F *int32.

	Repeated fields are slices.

	Helper functions are available to aid the setting of fields.
Helpers for getting values are superseded by the
GetFoo methods and their use is deprecated.
msg.Foo = proto.String(“hello”) // set field

	Constants are defined to hold the default values of all fields that
have them.  They have the form Default_StructName_FieldName.
Because the getter methods handle defaulted values,
direct use of these constants should be rare.

	Enums are given type names and maps from names to values.
Enum values are prefixed with the enum’s type name. Enum types have
a String method, and a Enum method to assist in message construction.

	Nested groups and enums have type names prefixed with the name of
the surrounding message type.

	Extensions are given descriptor names that start with E_,
followed by an underscore-delimited list of the nested messages
that contain it (if any) followed by the CamelCased name of the
extension field itself.  HasExtension, ClearExtension, GetExtension
and SetExtension are functions for manipulating extensions.

	Oneof field sets are given a single field in their message,
with distinguished wrapper types for each possible field value.

	Marshal and Unmarshal are functions to encode and decode the wire format.



Consider file test.proto, containing

    package example;
    
    enum FOO { X = 17; };
    
    message Test {
      required string label = 1;
      optional int32 type = 2 [default=77];
      repeated int64 reps = 3;
      optional group OptionalGroup = 4 {
        required string RequiredField = 5;
      }
    }





To create and play with a Test object from the example package,

    package main

    import (
        "log"

        "github.com/golang/protobuf/proto"
        "path/to/example"
    )

    func main() {
        test := &example.Test {
            Label: proto.String("hello"),
            Type:  proto.Int32(17),
            Optionalgroup: &example.Test_OptionalGroup {
                RequiredField: proto.String("good bye"),
            },
        }
        data, err := proto.Marshal(test)
        if err != nil {
            log.Fatal("marshaling error: ", err)
        }
        newTest := &example.Test{}
        err = proto.Unmarshal(data, newTest)
        if err != nil {
            log.Fatal("unmarshaling error: ", err)
        }
        // Now test and newTest contain the same data.
        if test.GetLabel() != newTest.GetLabel() {
            log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
        }
        // etc.
    }








Parameters

To pass extra parameters to the plugin, use a comma-separated
parameter list separated from the output directory by a colon:

protoc --go_out=plugins=grpc,import_path=mypackage:. *.proto






	import_prefix=xxx - a prefix that is added onto the beginning of
all imports. Useful for things like generating protos in a
subdirectory, or regenerating vendored protobufs in-place.

	import_path=foo/bar - used as the package if no input files
declare go_package. If it contains slashes, everything up to the
rightmost slash is ignored.

	plugins=plugin1+plugin2 - specifies the list of sub-plugins to
load. The only plugin in this repo is grpc.

	Mfoo/bar.proto=quux/shme - declares that foo/bar.proto is
associated with Go package quux/shme.  This is subject to the
import_prefix parameter.






gRPC Support

If a proto file specifies RPC services, protoc-gen-go can be instructed to
generate code compatible with gRPC (http://www.grpc.io/). To do this, pass
the plugins parameter to protoc-gen-go; the usual way is to insert it into
the –go_out argument to protoc:

protoc --go_out=plugins=grpc:. *.proto











          

      

      

    

  

    
      
          
            
  
TOML parser and encoder for Go with reflection

TOML stands for Tom’s Obvious, Minimal Language. This Go package provides a
reflection interface similar to Go’s standard library json and xml
packages. This package also supports the encoding.TextUnmarshaler and
encoding.TextMarshaler interfaces so that you can define custom data
representations. (There is an example of this below.)

Spec: https://github.com/mojombo/toml

Compatible with TOML version
v0.2.0 [https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md]

Documentation: http://godoc.org/github.com/BurntSushi/toml

Installation:

go get github.com/BurntSushi/toml





Try the toml validator:

go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml





[image: Build status] [https://travis-ci.org/BurntSushi/toml]


Testing

This package passes all tests in
toml-test [https://github.com/BurntSushi/toml-test] for both the decoder
and the encoder.




Examples

This package works similarly to how the Go standard library handles XML
and JSON. Namely, data is loaded into Go values via reflection.

For the simplest example, consider some TOML file as just a list of keys
and values:

Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z





Which could be defined in Go as:

type Config struct {
  Age int
  Cats []string
  Pi float64
  Perfection []int
  DOB time.Time // requires `import time`
}





And then decoded with:

var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
  // handle error
}





You can also use struct tags if your struct field name doesn’t map to a TOML
key value directly:

some_key_NAME = "wat"





type TOML struct {
  ObscureKey string `toml:"some_key_NAME"`
}








Using the encoding.TextUnmarshaler interface

Here’s an example that automatically parses duration strings into
time.Duration values:

[[song]]
name = "Thunder Road"
duration = "4m49s"

[[song]]
name = "Stairway to Heaven"
duration = "8m03s"





Which can be decoded with:

type song struct {
  Name     string
  Duration duration
}
type songs struct {
  Song []song
}
var favorites songs
if _, err := toml.Decode(blob, &favorites); err != nil {
  log.Fatal(err)
}

for _, s := range favorites.Song {
  fmt.Printf("%s (%s)\n", s.Name, s.Duration)
}





And you’ll also need a duration type that satisfies the
encoding.TextUnmarshaler interface:

type duration struct {
    time.Duration
}

func (d *duration) UnmarshalText(text []byte) error {
    var err error
    d.Duration, err = time.ParseDuration(string(text))
    return err
}








More complex usage

Here’s an example of how to load the example from the official spec page:

# This is a TOML document. Boom.

title = "TOML Example"

[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?

[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true

[servers]

  # You can indent as you please. Tabs or spaces. TOML don't care.
  [servers.alpha]
  ip = "10.0.0.1"
  dc = "eqdc10"

  [servers.beta]
  ip = "10.0.0.2"
  dc = "eqdc10"

[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it

# Line breaks are OK when inside arrays
hosts = [
  "alpha",
  "omega"
]





And the corresponding Go types are:

type tomlConfig struct {
    Title string
    Owner ownerInfo
    DB database `toml:"database"`
    Servers map[string]server
    Clients clients
}

type ownerInfo struct {
    Name string
    Org string `toml:"organization"`
    Bio string
    DOB time.Time
}

type database struct {
    Server string
    Ports []int
    ConnMax int `toml:"connection_max"`
    Enabled bool
}

type server struct {
    IP string
    DC string
}

type clients struct {
    Data [][]interface{}
    Hosts []string
}





Note that a case insensitive match will be tried if an exact match can’t be
found.

A working example of the above can be found in _examples/example.{go,toml}.







          

      

      

    

  

    
      
          
            
  
How to contribute

We’d love to accept your patches and contributions to this project.  There are
a just a few small guidelines you need to follow.


Contributor License Agreement

Contributions to any Google project must be accompanied by a Contributor
License Agreement.  This is not a copyright assignment, it simply gives
Google permission to use and redistribute your contributions as part of the
project.


	If you are an individual writing original source code and you’re sure you
own the intellectual property, then you’ll need to sign an individual
CLA [https://developers.google.com/open-source/cla/individual].

	If you work for a company that wants to allow you to contribute your work,
then you’ll need to sign a corporate CLA [https://developers.google.com/open-source/cla/corporate].



You generally only need to submit a CLA once, so if you’ve already submitted
one (even if it was for a different project), you probably don’t need to do it
again.




Submitting a patch


	It’s generally best to start by opening a new issue describing the bug or
feature you’re intending to fix.  Even if you think it’s relatively minor,
it’s helpful to know what people are working on.  Mention in the initial
issue that you are planning to work on that bug or feature so that it can
be assigned to you.

	Follow the normal process of forking [https://help.github.com/articles/fork-a-repo] the project, and setup a new
branch to work in.  It’s important that each group of changes be done in
separate branches in order to ensure that a pull request only includes the
commits related to that bug or feature.

	Go makes it very simple to ensure properly formatted code, so always run
go fmt on your code before committing it.  You should also run
golint [https://github.com/golang/lint] over your code.  As noted in the golint readme [https://github.com/golang/lint/blob/master/README], it’s not
strictly necessary that your code be completely “lint-free”, but this will
help you find common style issues.

	Any significant changes should almost always be accompanied by tests.  The
project already has good test coverage, so look at some of the existing
tests if you’re unsure how to go about it.  gocov [https://github.com/axw/gocov] and gocov-html [https://github.com/matm/gocov-html]
are invaluable tools for seeing which parts of your code aren’t being
exercised by your tests.

	Do your best to have well-formed commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html] for each change.
This provides consistency throughout the project, and ensures that commit
messages are able to be formatted properly by various git tools.

	Finally, push the commits to your fork and submit a pull request [https://help.github.com/articles/creating-a-pull-request].









          

      

      

    

  

    
      
          
            
  
gofuzz

gofuzz is a library for populating go objects with random values.

[image: GoDoc] [https://godoc.org/github.com/google/gofuzz]
[image: Travis] [https://travis-ci.org/google/gofuzz]

This is useful for testing:


	Do your project’s objects really serialize/unserialize correctly in all cases?

	Is there an incorrectly formatted object that will cause your project to panic?



Import with import "github.com/google/gofuzz"

You can use it on single variables:

f := fuzz.New()
var myInt int
f.Fuzz(&myInt) // myInt gets a random value.





You can use it on maps:

f := fuzz.New().NilChance(0).NumElements(1, 1)
var myMap map[ComplexKeyType]string
f.Fuzz(&myMap) // myMap will have exactly one element.





Customize the chance of getting a nil pointer:

f := fuzz.New().NilChance(.5)
var fancyStruct struct {
  A, B, C, D *string
}
f.Fuzz(&fancyStruct) // About half the pointers should be set.





You can even customize the randomization completely if needed:

type MyEnum string
const (
        A MyEnum = "A"
        B MyEnum = "B"
)
type MyInfo struct {
        Type MyEnum
        AInfo *string
        BInfo *string
}

f := fuzz.New().NilChance(0).Funcs(
        func(e *MyInfo, c fuzz.Continue) {
                switch c.Intn(2) {
                case 0:
                        e.Type = A
                        c.Fuzz(&e.AInfo)
                case 1:
                        e.Type = B
                        c.Fuzz(&e.BInfo)
                }
        },
)

var myObject MyInfo
f.Fuzz(&myObject) // Type will correspond to whether A or B info is set.





See more examples in example_test.go.

Happy testing!





          

      

      

    

  

    
      
          
            
  
Blackfriday [image: Build Status] [https://travis-ci.org/russross/blackfriday]

Blackfriday is a Markdown [http://daringfireball.net/projects/markdown/] processor implemented in Go [http://golang.org/]. It
is paranoid about its input (so you can safely feed it user-supplied
data), it is fast, it supports common extensions (tables, smart
punctuation substitutions, etc.), and it is safe for all utf-8
(unicode) input.

HTML output is currently supported, along with Smartypants
extensions. An experimental LaTeX output engine is also included.

It started as a translation from C of Sundown [https://github.com/vmg/sundown].


Installation

Blackfriday is compatible with Go 1. If you are using an older
release of Go, consider using v1.1 of blackfriday, which was based
on the last stable release of Go prior to Go 1. You can find it as a
tagged commit on github.

With Go 1 and git installed:

go get github.com/russross/blackfriday





will download, compile, and install the package into your $GOPATH
directory hierarchy. Alternatively, you can achieve the same if you
import it into a project:

import "github.com/russross/blackfriday"





and go get without parameters.




Usage

For basic usage, it is as simple as getting your input into a byte
slice and calling:

output := blackfriday.MarkdownBasic(input)





This renders it with no extensions enabled. To get a more useful
feature set, use this instead:

output := blackfriday.MarkdownCommon(input)






Sanitize untrusted content

Blackfriday itself does nothing to protect against malicious content. If you are
dealing with user-supplied markdown, we recommend running blackfriday’s output
through HTML sanitizer such as
Bluemonday [https://github.com/microcosm-cc/bluemonday].

Here’s an example of simple usage of blackfriday together with bluemonday:

import (
    "github.com/microcosm-cc/bluemonday"
    "github.com/russross/blackfriday"
)

// ...
unsafe := blackfriday.MarkdownCommon(input)
html := bluemonday.UGCPolicy().SanitizeBytes(unsafe)








Custom options

If you want to customize the set of options, first get a renderer
(currently either the HTML or LaTeX output engines), then use it to
call the more general Markdown function. For examples, see the
implementations of MarkdownBasic and MarkdownCommon in
markdown.go.

You can also check out blackfriday-tool for a more complete example
of how to use it. Download and install it using:

go get github.com/russross/blackfriday-tool





This is a simple command-line tool that allows you to process a
markdown file using a standalone program.  You can also browse the
source directly on github if you are just looking for some example
code:


	http://github.com/russross/blackfriday-tool



Note that if you have not already done so, installing
blackfriday-tool will be sufficient to download and install
blackfriday in addition to the tool itself. The tool binary will be
installed in $GOPATH/bin.  This is a statically-linked binary that
can be copied to wherever you need it without worrying about
dependencies and library versions.






Features

All features of Sundown are supported, including:


	Compatibility. The Markdown v1.0.3 test suite passes with
the --tidy option.  Without --tidy, the differences are
mostly in whitespace and entity escaping, where blackfriday is
more consistent and cleaner.



	Common extensions, including table support, fenced code
blocks, autolinks, strikethroughs, non-strict emphasis, etc.



	Safety. Blackfriday is paranoid when parsing, making it safe
to feed untrusted user input without fear of bad things
happening. The test suite stress tests this and there are no
known inputs that make it crash.  If you find one, please let me
know and send me the input that does it.

NOTE: “safety” in this context means runtime safety only. In order to
protect yourself agains JavaScript injection in untrusted content, see
this example [https://github.com/russross/blackfriday#sanitize-untrusted-content].



	Fast processing. It is fast enough to render on-demand in
most web applications without having to cache the output.



	Thread safety. You can run multiple parsers in different
goroutines without ill effect. There is no dependence on global
shared state.



	Minimal dependencies. Blackfriday only depends on standard
library packages in Go. The source code is pretty
self-contained, so it is easy to add to any project, including
Google App Engine projects.



	Standards compliant. Output successfully validates using the
W3C validation tool for HTML 4.01 and XHTML 1.0 Transitional.








Extensions

In addition to the standard markdown syntax, this package
implements the following extensions:


	Intra-word emphasis supression. The _ character is
commonly used inside words when discussing code, so having
markdown interpret it as an emphasis command is usually the
wrong thing. Blackfriday lets you treat all emphasis markers as
normal characters when they occur inside a word.



	Tables. Tables can be created by drawing them in the input
using a simple syntax:

Name    | Age
--------|------
Bob     | 27
Alice   | 23







	Fenced code blocks. In addition to the normal 4-space
indentation to mark code blocks, you can explicitly mark them
and supply a language (to make syntax highlighting simple). Just
mark it like this:

``` go
func getTrue() bool {
    return true
}
```





You can use 3 or more backticks to mark the beginning of the
block, and the same number to mark the end of the block.



	Autolinking. Blackfriday can find URLs that have not been
explicitly marked as links and turn them into links.



	Strikethrough. Use two tildes (~~) to mark text that
should be crossed out.



	Hard line breaks. With this extension enabled (it is off by
default in the MarkdownBasic and MarkdownCommon convenience
functions), newlines in the input translate into line breaks in
the output.



	Smart quotes. Smartypants-style punctuation substitution is
supported, turning normal double- and single-quote marks into
curly quotes, etc.



	LaTeX-style dash parsing is an additional option, where --
is translated into &ndash;, and --- is translated into
&mdash;. This differs from most smartypants processors, which
turn a single hyphen into an ndash and a double hyphen into an
mdash.



	Smart fractions, where anything that looks like a fraction
is translated into suitable HTML (instead of just a few special
cases like most smartypant processors). For example, 4/5
becomes <sup>4</sup>&frasl;<sub>5</sub>, which renders as
4⁄

5.








Other renderers

Blackfriday is structured to allow alternative rendering engines. Here
are a few of note:


	github_flavored_markdown [https://godoc.org/github.com/shurcooL/github_flavored_markdown]:
provides a GitHub Flavored Markdown renderer with fenced code block
highlighting, clickable header anchor links.

It’s not customizable, and its goal is to produce HTML output
equivalent to the GitHub Markdown API endpoint [https://developer.github.com/v3/markdown/#render-a-markdown-document-in-raw-mode],
except the rendering is performed locally.



	markdownfmt [https://github.com/shurcooL/markdownfmt]: like gofmt,
but for markdown.



	LaTeX output: renders output as LaTeX. This is currently part of the
main Blackfriday repository, but may be split into its own project
in the future. If you are interested in owning and maintaining the
LaTeX output component, please be in touch.

It renders some basic documents, but is only experimental at this
point. In particular, it does not do any inline escaping, so input
that happens to look like LaTeX code will be passed through without
modification.








Todo


	More unit testing

	Improve unicode support. It does not understand all unicode
rules (about what constitutes a letter, a punctuation symbol,
etc.), so it may fail to detect word boundaries correctly in
some instances. It is safe on all utf-8 input.






License

Blackfriday is distributed under the Simplified BSD License







          

      

      

    

  

    
      
          
            
  
Golang logging library

[image: godoc] [https://godoc.org/github.com/op/go-logging] [image: build] [https://travis-ci.org/op/go-logging]

Package logging implements a logging infrastructure for Go. Its output format
is customizable and supports different logging backends like syslog, file and
memory. Multiple backends can be utilized with different log levels per backend
and logger.




Example

Let’s have a look at an example which demonstrates most
of the features found in this library.

[image: Example Output]

package main

import (
    "os"

    "github.com/op/go-logging"
)

var log = logging.MustGetLogger("example")

// Example format string. Everything except the message has a custom color
// which is dependent on the log level. Many fields have a custom output
// formatting too, eg. the time returns the hour down to the milli second.
var format = logging.MustStringFormatter(
    "%{color}%{time:15:04:05.000} %{shortfunc} ▶ %{level:.4s} %{id:03x}%{color:reset} %{message}",
)

// Password is just an example type implementing the Redactor interface. Any
// time this is logged, the Redacted() function will be called.
type Password string

func (p Password) Redacted() interface{} {
    return logging.Redact(string(p))
}

func main() {
    // For demo purposes, create two backend for os.Stderr.
    backend1 := logging.NewLogBackend(os.Stderr, "", 0)
    backend2 := logging.NewLogBackend(os.Stderr, "", 0)

    // For messages written to backend2 we want to add some additional
    // information to the output, including the used log level and the name of
    // the function.
    backend2Formatter := logging.NewBackendFormatter(backend2, format)

    // Only errors and more severe messages should be sent to backend1
    backend1Leveled := logging.AddModuleLevel(backend1)
    backend1Leveled.SetLevel(logging.ERROR, "")

    // Set the backends to be used.
    logging.SetBackend(backend1Leveled, backend2Formatter)

    log.Debug("debug %s", Password("secret"))
    log.Info("info")
    log.Notice("notice")
    log.Warning("warning")
    log.Error("err")
    log.Critical("crit")
}








Installing


Using go get

$ go get github.com/op/go-logging





After this command go-logging is ready to use. Its source will be in:

$GOROOT/src/pkg/github.com/op/go-logging





You can use go get -u to update the package.






Documentation

For docs, see http://godoc.org/github.com/op/go-logging or run:

$ godoc github.com/op/go-logging








Additional resources


	wslog [https://godoc.org/github.com/cryptix/go/logging/wslog] – exposes log messages through a WebSocket.







          

      

      

    

  

    
      
          
            
  
getpasswd in Go [image: GoDoc] [https://godoc.org/github.com/howeyc/gopass]

Retrieve password from user terminal input without echo

Verified on BSD, Linux, and Windows.

Example:

package main

import "fmt"
import "github.com/howeyc/gopass"

func main() {
    fmt.Printf("Password: ")
    pass := gopass.GetPasswd() // Silent, for *'s use gopass.GetPasswdMasked()
    // Do something with pass
}





Caution: Multi-byte characters not supported!





          

      

      

    

  

    
      
          
            
  
jWalterWeatherman

Seamless printing to the terminal (stdout) and logging to a io.Writer
(file) that’s as easy to use as fmt.Println.

[image: Always Leave A Note]
Graphic by JonnyEtc [http://jonnyetc.deviantart.com/art/And-That-s-Why-You-Always-Leave-a-Note-315311422]

JWW is primarily a wrapper around the excellent standard log library. It
provides a few advantages over using the standard log library alone.


	Ready to go out of the box.

	One library for both printing to the terminal and logging (to files).

	Really easy to log to either a temp file or a file you specify.



I really wanted a very straightforward library that could seamlessly do
the following things.


	Replace all the println, printf, etc statements thought my code with
something more useful

	Allow the user to easily control what levels are printed to stdout

	Allow the user to easily control what levels are logged

	Provide an easy mechanism (like fmt.Println) to print info to the user
which can be easily logged as well

	Due to 2 & 3 provide easy verbose mode for output and logs

	Not have any unnecessary initialization cruft. Just use it.






Usage


Step 1. Use it

Put calls throughout your source based on type of feedback.
No initialization or setup needs to happen. Just start calling things.

Available Loggers are:


	TRACE

	DEBUG

	INFO

	WARN

	ERROR

	CRITICAL

	FATAL



These each are loggers based on the log standard library and follow the
standard usage. Eg..

    import (
        jww "github.com/spf13/jwalterweatherman"
    )

    ...

    if err != nil {

        // This is a pretty serious error and the user should know about
        // it. It will be printed to the terminal as well as logged under the
        // default thresholds.

        jww.ERROR.Println(err)
    }

    if err2 != nil {
        // This error isn’t going to materially change the behavior of the
        // application, but it’s something that may not be what the user
        // expects. Under the default thresholds, Warn will be logged, but
        // not printed to the terminal. 

        jww.WARN.Println(err2)
    }

    // Information that’s relevant to what’s happening, but not very
    // important for the user. Under the default thresholds this will be
    // discarded.

    jww.INFO.Printf("information %q", response)





Why 7 levels?

Maybe you think that 7 levels are too much for any application... and you
are probably correct. Just because there are seven levels doesn’t mean
that you should be using all 7 levels. Pick the right set for your needs.
Remember they only have to mean something to your project.




Step 2. Optionally configure JWW

Under the default thresholds :


	Debug, Trace & Info goto /dev/null

	Warn and above is logged (when a log file/io.Writer is provided)

	Error and above is printed to the terminal (stdout)




Changing the thresholds

The threshold can be changed at any time, but will only affect calls that
execute after the change was made.

This is very useful if your application has a verbose mode. Of course you
can decide what verbose means to you or even have multiple levels of
verbosity.

    import (
        jww "github.com/spf13/jwalterweatherman"
    )

    if Verbose {
        jww.SetLogThreshold(jww.LevelTrace)
        jww.SetStdoutThreshold(jww.LevelInfo)
    }








Using a temp log file

JWW conveniently creates a temporary file and sets the log Handle to
a io.Writer created for it. You should call this early in your application
initialization routine as it will only log calls made after it is executed.
When this option is used, the library will fmt.Println where to find the
log file.

    import (
        jww "github.com/spf13/jwalterweatherman"
    )

    jww.UseTempLogFile("YourAppName") 








Setting a log file

JWW can log to any file you provide a path to (provided it’s writable).
Will only append to this file.

    import (
        jww "github.com/spf13/jwalterweatherman"
    )

    jww.SetLogFile("/path/to/logfile") 












More information

This is an early release. I’ve been using it for a while and this is the
third interface I’ve tried. I like this one pretty well, but no guarantees
that it won’t change a bit.

I wrote this for use in hugo [http://hugo.spf13.com]. If you are looking
for a static website engine that’s super fast please checkout Hugo.





          

      

      

    

  

    
      
          
            
  [image: Build Status] [https://travis-ci.org/spf13/pflag]


Description

pflag is a drop-in replacement for Go’s flag package, implementing
POSIX/GNU-style –flags.

pflag is compatible with the GNU extensions to the POSIX recommendations
for command-line options [http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html]. For a more precise description, see the
“Command-line flag syntax” section below.

pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.




Installation

pflag is available using the standard go get command.

Install by running:

go get github.com/spf13/pflag





Run tests by running:

go test github.com/spf13/pflag








Usage

pflag is a drop-in replacement of Go’s native flag package. If you import
pflag under the name “flag” then all code should continue to function
with no changes.

import flag "github.com/spf13/pflag"





There is one exception to this: if you directly instantiate the Flag struct
there is one more field “Shorthand” that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.

Define flags using flag.String(), Bool(), Int(), etc.

This declares an integer flag, -flagname, stored in the pointer ip, with type *int.

var ip *int = flag.Int("flagname", 1234, "help message for flagname")





If you like, you can bind the flag to a variable using the Var() functions.

var flagvar int
func init() {
    flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}





Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by

flag.Var(&flagVal, "name", "help message for flagname")





For such flags, the default value is just the initial value of the variable.

After all flags are defined, call

flag.Parse()





to parse the command line into the defined flags.

Flags may then be used directly. If you’re using the flags themselves,
they are all pointers; if you bind to variables, they’re values.

fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)





There are helpers function to get values later if you have the FlagSet but
it was difficult to keep up with all of the the flag pointers in your code.
If you have a pflag.FlagSet with a flag called ‘flagname’ of type int you
can use GetInt() to get the int value. But notice that ‘flagname’ must exist
and it must be an int. GetString(“flagname”) will fail.

i, err := flagset.GetInt("flagname")





After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.

The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
‘P’ to the name of any function that defines a flag.

var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
    flag.BoolVarP("boolname", "b", true, "help message")
}
flag.VarP(&flagVar, "varname", "v", 1234, "help message")





Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.

The default set of command-line flags is controlled by
top-level functions.  The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.




Setting no option default values for flags

After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:

var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"





Would result in something like

| Parsed Arguments | Resulting Value |
| ————-    | ————-   |
| –flagname=1357  | ip=1357         |
| –flagname       | ip=4321         |
| [nothing]        | ip=1234         |




Command line flag syntax

--flag    // boolean flags, or flags with no option default values
--flag x  // only on flags without a default value
--flag=x





Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value

// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID

// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234

// mixed
-abcs "hello"
-absd="hello"
-abcs1234





Flag parsing stops after the terminator “–”. Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.

Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.




Mutating or “Normalizing” Flag names

It is possible to set a custom flag name ‘normalization function.’ It allows flag names to be mutated both when created in the code and when used on the command line to some ‘normalized’ form. The ‘normalized’ form is used for comparison. Two examples of using the custom normalization func follow.

Example #1: You want -, _, and . in flags to compare the same. aka –my-flag == –my_flag == –my.flag

func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
    from := []string{"-", "_"}
    to := "."
    for _, sep := range from {
        name = strings.Replace(name, sep, to, -1)
    }
    return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)





Example #2: You want to alias two flags. aka –old-flag-name == –new-flag-name

func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
    switch name {
    case "old-flag-name":
        name = "new-flag-name"
        break
    }
    return pflag.NormalizedName(name)
}

myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)








Deprecating a flag or its shorthand

It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.

Example #1: You want to deprecate a flag named “badflag” as well as inform the users what flag they should use instead.

// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")





This hides “badflag” from help text, and prints Flag --badflag has been deprecated, please use --good-flag instead when “badflag” is used.

Example #2: You want to keep a flag name “noshorthandflag” but deprecate its shortname “n”.

// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")





This hides the shortname “n” from help text, and prints Flag shorthand -n has been deprecated, please use --noshorthandflag only when the shorthand “n” is used.

Note that usage message is essential here, and it should not be empty.




Hidden flags

It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.

Example: You have a flag named “secretFlag” that you need for internal use only and don’t want it showing up in help text, or for its usage text to be available.

// hide a flag by specifying its name
flags.MarkHidden("secretFlag")








More info

You can see the full reference documentation of the pflag package
at godoc.org [http://godoc.org/github.com/ogier/pflag], or through go’s standard documentation system by
running godoc -http=:6060 and browsing to
http://localhost:6060/pkg/github.com/ogier/pflag after
installation.





          

      

      

    

  

    
      
          
            
  
Generating Bash Completions For Your Own cobra.Command

Generating bash completions from a cobra command is incredibly easy. An actual program which does so for the kubernetes kubectl binary is as follows:

package main

import (
        "io/ioutil"
        "os"

        "github.com/GoogleCloudPlatform/kubernetes/pkg/kubectl/cmd"
)

func main() {
        kubectl := cmd.NewFactory(nil).NewKubectlCommand(os.Stdin, ioutil.Discard, ioutil.Discard)
        kubectl.GenBashCompletionFile("out.sh")
}





That will get you completions of subcommands and flags. If you make additional annotations to your code, you can get even more intelligent and flexible behavior.


Creating your own custom functions

Some more actual code that works in kubernetes:

const (
        bash_completion_func = `__kubectl_parse_get()
{
    local kubectl_output out
    if kubectl_output=$(kubectl get --no-headers "$1" 2>/dev/null); then
        out=($(echo "${kubectl_output}" | awk '{print $1}'))
        COMPREPLY=( $( compgen -W "${out[*]}" -- "$cur" ) )
    fi
}

__kubectl_get_resource()
{
    if [[ ${#nouns[@]} -eq 0 ]]; then
        return 1
    fi
    __kubectl_parse_get ${nouns[${#nouns[@]} -1]}
    if [[ $? -eq 0 ]]; then
        return 0
    fi
}

__custom_func() {
    case ${last_command} in
        kubectl_get | kubectl_describe | kubectl_delete | kubectl_stop)
            __kubectl_get_resource
            return
            ;;
        *)
            ;;
    esac
}
`)





And then I set that in my command definition:

cmds := &cobra.Command{
    Use:   "kubectl",
    Short: "kubectl controls the Kubernetes cluster manager",
    Long: `kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.`,
    Run: runHelp,
    BashCompletionFunction: bash_completion_func,
}





The BashCompletionFunction option is really only valid/useful on the root command. Doing the above will cause __custom_func() to be called when the built in processor was unable to find a solution. In the case of kubernetes a valid command might look something like kubectl get pod [mypod]. If you type kubectl get pod [tab][tab] the __customc_func() will run because the cobra.Command only understood “kubectl” and “get.” __custom_func() will see that the cobra.Command is “kubectl_get” and will thus call another helper __kubectl_get_resource().  __kubectl_get_resource will look at the ‘nouns’ collected. In our example the only noun will be pod.  So it will call __kubectl_parse_get pod.  __kubectl_parse_get will actually call out to kubernetes and get any pods.  It will then set COMPREPLY to valid pods!




Have the completions code complete your ‘nouns’

In the above example “pod” was assumed to already be typed. But if you want kubectl get [tab][tab] to show a list of valid “nouns” you have to set them. Simplified code from kubectl get looks like:

validArgs []string = { "pods", "nodes", "services", "replicationControllers" }

cmd := &cobra.Command{
    Use:     "get [(-o|--output=)json|yaml|template|...] (RESOURCE [NAME] | RESOURCE/NAME ...)",
    Short:   "Display one or many resources",
    Long:    get_long,
    Example: get_example,
    Run: func(cmd *cobra.Command, args []string) {
        err := RunGet(f, out, cmd, args)
        util.CheckErr(err)
    },
    ValidArgs: validArgs,
}





Notice we put the “ValidArgs” on the “get” subcommand. Doing so will give results like

# kubectl get [tab][tab]
nodes                 pods                    replicationControllers  services








Mark flags as required

Most of the time completions will only show subcommands. But if a flag is required to make a subcommand work, you probably want it to show up when the user types [tab][tab].  Marking a flag as ‘Required’ is incredibly easy.

cmd.MarkFlagRequired("pod")
cmd.MarkFlagRequired("container")





and you’ll get something like

# kubectl exec [tab][tab][tab]
-c            --container=  -p            --pod=  










Specify valid filename extensions for flags that take a filename

In this example we use –filename= and expect to get a json or yaml file as the argument. To make this easier we annotate the –filename flag with valid filename extensions.

    annotations := []string{"json", "yaml", "yml"}
    annotation := make(map[string][]string)
    annotation[cobra.BashCompFilenameExt] = annotations

    flag := &pflag.Flag{
        Name:        "filename",
        Shorthand:   "f",
        Usage:       usage,
        Value:       value,
        DefValue:    value.String(),
        Annotations: annotation,
    }
    cmd.Flags().AddFlag(flag)





Now when you run a command with this filename flag you’ll get something like

# kubectl create -f 
test/                         example/                      rpmbuild/
hello.yml                     test.json





So while there are many other files in the CWD it only shows me subdirs and those with valid extensions.





          

      

      

    

  

    
      
          
            
  
Generating Markdown Docs For Your Own cobra.Command


Generate markdown docs for the entire command tree

This program can actually generate docs for the kubectl command in the kubernetes project

package main

import (
    "io/ioutil"
    "os"

    "github.com/GoogleCloudPlatform/kubernetes/pkg/kubectl/cmd"
    "github.com/spf13/cobra"
)

func main() {
    kubectl := cmd.NewFactory(nil).NewKubectlCommand(os.Stdin, ioutil.Discard, ioutil.Discard)
    cobra.GenMarkdownTree(kubectl, "./")
}





This will generate a whole series of files, one for each command in the tree, in the directory specified (in this case ”./”)




Generate markdown docs for a single command

You may wish to have more control over the output, or only generate for a single command, instead of the entire command tree. If this is the case you may prefer to GenMarkdown instead of GenMarkdownTree

    out := new(bytes.Buffer)
    cobra.GenMarkdown(cmd, out)





This will write the markdown doc for ONLY “cmd” into the out, buffer.




Customize the output

Both GenMarkdown and GenMarkdownTree have alternate versions with callbacks to get some control of the output:

func GenMarkdownTreeCustom(cmd *Command, dir string, filePrepender func(string) string, linkHandler func(string) string) {
    //...
}





func GenMarkdownCustom(cmd *Command, out *bytes.Buffer, linkHandler func(string) string) {
    //...
}





The filePrepender will prepend the return value given the full filepath to the rendered Markdown file. A common use case is to add front matter to use the generated documentation with Hugo [http://gohugo.io/]:

const fmTemplate = `---
date: %s
title: "%s"
slug: %s
url: %s
---
`

filePrepender := func(filename string) string {
    now := time.Now().Format(time.RFC3339)
    name := filepath.Base(filename)
    base := strings.TrimSuffix(name, path.Ext(name))
    url := "/commands/" + strings.ToLower(base) + "/"
    return fmt.Sprintf(fmTemplate, now, strings.Replace(base, "_", " ", -1), base, url)
}





The linkHandler can be used to customize the rendered internal links to the commands, given a filename:

linkHandler := func(name string) string {
    base := strings.TrimSuffix(name, path.Ext(name))
    return "/commands/" + strings.ToLower(base) + "/"
}











          

      

      

    

  

    
      
          
            
  
Generating Man Pages For Your Own cobra.Command

Generating bash completions from a cobra command is incredibly easy. An example is as follows:

package main

import (
    "github.com/spf13/cobra"
)

func main() {
    cmd := &cobra.Command{
        Use:   "test",
        Short: "my test program",
    }
    header := &cobra.GenManHeader{
        Title: "MINE",
        Section: "3",
    }
    cmd.GenManTree(header, "/tmp")
}





That will get you a man page /tmp/test.1





          

      

      

    

  

    
      
          
            
  
Cobra

A Commander for modern go CLI interactions

[image: Build Status] [https://travis-ci.org/spf13/cobra]


Overview

Cobra is a commander providing a simple interface to create powerful modern CLI
interfaces similar to git & go tools. In addition to providing an interface, Cobra
simultaneously provides a controller to organize your application code.

Inspired by go, go-Commander, gh and subcommand, Cobra improves on these by
providing fully posix compliant flags (including short & long versions),
nesting commands, and the ability to define your own help and usage for any or
all commands.

Cobra has an exceptionally clean interface and simple design without needless
constructors or initialization methods.

Applications built with Cobra commands are designed to be as user friendly as
possible. Flags can be placed before or after the command (as long as a
confusing space isn’t provided). Both short and long flags can be used. A
command need not even be fully typed. The shortest unambiguous string will
suffice. Help is automatically generated and available for the application or
for a specific command using either the help command or the –help flag.




Concepts

Cobra is built on a structure of commands & flags.

Commands represent actions and Flags are modifiers for those actions.

In the following example ‘server’ is a command and ‘port’ is a flag.

hugo server --port=1313






Commands

Command is the central point of the application. Each interaction that
the application supports will be contained in a Command. A command can
have children commands and optionally run an action.

In the example above ‘server’ is the command

A Command has the following structure:

type Command struct {
    Use string // The one-line usage message.
    Short string // The short description shown in the 'help' output.
    Long string // The long message shown in the 'help <this-command>' output.
    Run func(cmd *Command, args []string) // Run runs the command.
}








Flags

A Flag is a way to modify the behavior of an command. Cobra supports
fully posix compliant flags as well as the go flag package.
A Cobra command can define flags that persist through to children commands
and flags that are only available to that command.

In the example above ‘port’ is the flag.

Flag functionality is provided by the pflag
library [https://github.com/ogier/pflag], a fork of the flag standard library
which maintains the same interface while adding posix compliance.






Usage

Cobra works by creating a set of commands and then organizing them into a tree.
The tree defines the structure of the application.

Once each command is defined with it’s corresponding flags, then the
tree is assigned to the commander which is finally executed.


Installing

Using Cobra is easy. First use go get to install the latest version
of the library.

$ go get github.com/spf13/cobra





Next include cobra in your application.

import "github.com/spf13/cobra"








Create the root command

The root command represents your binary itself.

Cobra doesn’t require any special constructors. Simply create your commands.

var HugoCmd = &cobra.Command{
    Use:   "hugo",
    Short: "Hugo is a very fast static site generator",
    Long: `A Fast and Flexible Static Site Generator built with
            love by spf13 and friends in Go.
            Complete documentation is available at http://hugo.spf13.com`,
    Run: func(cmd *cobra.Command, args []string) {
        // Do Stuff Here
    },
}








Create additional commands

Additional commands can be defined.

var versionCmd = &cobra.Command{
    Use:   "version",
    Short: "Print the version number of Hugo",
    Long:  `All software has versions. This is Hugo's`,
    Run: func(cmd *cobra.Command, args []string) {
        fmt.Println("Hugo Static Site Generator v0.9 -- HEAD")
    },
}








Attach command to its parent

In this example we are attaching it to the root, but commands can be attached at any level.

HugoCmd.AddCommand(versionCmd)








Assign flags to a command

Since the flags are defined and used in different locations, we need to
define a variable outside with the correct scope to assign the flag to
work with.

var Verbose bool
var Source string





There are two different approaches to assign a flag.


Persistent Flags

A flag can be ‘persistent’ meaning that this flag will be available to the
command it’s assigned to as well as every command under that command. For
global flags assign a flag as a persistent flag on the root.

HugoCmd.PersistentFlags().BoolVarP(&Verbose, "verbose", "v", false, "verbose output")








Local Flags

A flag can also be assigned locally which will only apply to that specific command.

HugoCmd.Flags().StringVarP(&Source, "source", "s", "", "Source directory to read from")










Remove a command from its parent

Removing a command is not a common action in simple programs but it allows 3rd parties to customize an existing command tree.

In this example, we remove the existing VersionCmd command of an existing root command, and we replace it by our own version.

mainlib.RootCmd.RemoveCommand(mainlib.VersionCmd)
mainlib.RootCmd.AddCommand(versionCmd)








Once all commands and flags are defined, Execute the commands

Execute should be run on the root for clarity, though it can be called on any command.

HugoCmd.Execute()










Example

In the example below we have defined three commands. Two are at the top level
and one (cmdTimes) is a child of one of the top commands. In this case the root
is not executable meaning that a subcommand is required. This is accomplished
by not providing a ‘Run’ for the ‘rootCmd’.

We have only defined one flag for a single command.

More documentation about flags is available at https://github.com/spf13/pflag

import(
    "github.com/spf13/cobra"
    "fmt"
    "strings"
)

func main() {

    var echoTimes int

    var cmdPrint = &cobra.Command{
        Use:   "print [string to print]",
        Short: "Print anything to the screen",
        Long:  `print is for printing anything back to the screen.
        For many years people have printed back to the screen.
        `,
        Run: func(cmd *cobra.Command, args []string) {
            fmt.Println("Print: " + strings.Join(args, " "))
        },
    }

    var cmdEcho = &cobra.Command{
        Use:   "echo [string to echo]",
        Short: "Echo anything to the screen",
        Long:  `echo is for echoing anything back.
        Echo works a lot like print, except it has a child command.
        `,
        Run: func(cmd *cobra.Command, args []string) {
            fmt.Println("Print: " + strings.Join(args, " "))
        },
    }

    var cmdTimes = &cobra.Command{
        Use:   "times [# times] [string to echo]",
        Short: "Echo anything to the screen more times",
        Long:  `echo things multiple times back to the user by providing
        a count and a string.`,
        Run: func(cmd *cobra.Command, args []string) {
            for i:=0; i < echoTimes; i++ {
                fmt.Println("Echo: " + strings.Join(args, " "))
            }
        },
    }

    cmdTimes.Flags().IntVarP(&echoTimes, "times", "t", 1, "times to echo the input")

    var rootCmd = &cobra.Command{Use: "app"}
    rootCmd.AddCommand(cmdPrint, cmdEcho)
    cmdEcho.AddCommand(cmdTimes)
    rootCmd.Execute()
}





For a more complete example of a larger application, please checkout Hugo [http://hugo.spf13.com]




The Help Command

Cobra automatically adds a help command to your application when you have subcommands.
This will be called when a user runs ‘app help’. Additionally help will also
support all other commands as input. Say for instance you have a command called
‘create’ without any additional configuration cobra will work when ‘app help
create’ is called.  Every command will automatically have the ‘–help’ flag added.


Example

The following output is automatically generated by cobra. Nothing beyond the
command and flag definitions are needed.

> hugo help

A Fast and Flexible Static Site Generator built with
love by spf13 and friends in Go.

Complete documentation is available at http://hugo.spf13.com

Usage:
  hugo [flags]
  hugo [command]

Available Commands:
  server          :: Hugo runs it's own a webserver to render the files
  version         :: Print the version number of Hugo
  check           :: Check content in the source directory
  benchmark       :: Benchmark hugo by building a site a number of times
  help [command]  :: Help about any command

 Available Flags:
  -b, --base-url="": hostname (and path) to the root eg. http://spf13.com/
  -D, --build-drafts=false: include content marked as draft
      --config="": config file (default is path/config.yaml|json|toml)
  -d, --destination="": filesystem path to write files to
  -s, --source="": filesystem path to read files relative from
      --stepAnalysis=false: display memory and timing of different steps of the program
      --uglyurls=false: if true, use /filename.html instead of /filename/
  -v, --verbose=false: verbose output
  -w, --watch=false: watch filesystem for changes and recreate as needed

Use "hugo help [command]" for more information about that command.





Help is just a command like any other. There is no special logic or behavior
around it. In fact you can provide your own if you want.




Defining your own help

You can provide your own Help command or you own template for the default command to use.

The default help command is

func (c *Command) initHelp() {
    if c.helpCommand == nil {
        c.helpCommand = &Command{
            Use:   "help [command]",
            Short: "Help about any command",
            Long: `Help provides help for any command in the application.
    Simply type ` + c.Name() + ` help [path to command] for full details.`,
            Run: c.HelpFunc(),
        }
    }
    c.AddCommand(c.helpCommand)
}





You can provide your own command, function or template through the following methods.

command.SetHelpCommand(cmd *Command)

command.SetHelpFunc(f func(*Command, []string))

command.SetHelpTemplate(s string)





The latter two will also apply to any children commands.






Usage

When the user provides an invalid flag or invalid command Cobra responds by
showing the user the ‘usage’


Example

You may recognize this from the help above. That’s because the default help
embeds the usage as part of it’s output.

Usage:
  hugo [flags]
  hugo [command]

Available Commands:
  server          Hugo runs it's own a webserver to render the files
  version         Print the version number of Hugo
  check           Check content in the source directory
  benchmark       Benchmark hugo by building a site a number of times
  help [command]  Help about any command

 Available Flags:
  -b, --base-url="": hostname (and path) to the root eg. http://spf13.com/
  -D, --build-drafts=false: include content marked as draft
      --config="": config file (default is path/config.yaml|json|toml)
  -d, --destination="": filesystem path to write files to
  -s, --source="": filesystem path to read files relative from
      --stepAnalysis=false: display memory and timing of different steps of the program
      --uglyurls=false: if true, use /filename.html instead of /filename/
  -v, --verbose=false: verbose output
  -w, --watch=false: watch filesystem for changes and recreate as needed








Defining your own usage

You can provide your own usage function or template for cobra to use.

The default usage function is

    return func(c *Command) error {
        err := tmpl(c.Out(), c.UsageTemplate(), c)
        return err
    }





Like help the function and template are over ridable through public methods.

command.SetUsageFunc(f func(*Command) error)

command.SetUsageTemplate(s string)










PreRun or PostRun Hooks

It is possible to run functions before or after the main Run function of your command. The PersistentPreRun and PreRun functions will be executed before Run. PersistendPostRun and PostRun will be executed after Run.  The Persistent*Run functions will be inherrited by children if they do not declare their own.  These function are run in the following order:


	PersistentPreRun

	PreRun

	Run

	PostRun

	PersistenPostRun



And example of two commands which use all of these features is below.  When the subcommand in executed it will run the root command’s PersistentPreRun but not the root command’s PersistentPostRun

package main

import (
    "fmt"

    "github.com/spf13/cobra"
)

func main() {

    var rootCmd = &cobra.Command{
        Use:   "root [sub]",
        Short: "My root command",
        PersistentPreRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside rootCmd PersistentPreRun with args: %v\n", args)
        },
        PreRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside rootCmd PreRun with args: %v\n", args)
        },
        Run: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside rootCmd Run with args: %v\n", args)
        },
        PostRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside rootCmd PostRun with args: %v\n", args)
        },
        PersistentPostRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside rootCmd PersistentPostRun with args: %v\n", args)
        },
    }

    var subCmd = &cobra.Command{
        Use:   "sub [no options!]",
        Short: "My sub command",
        PreRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside subCmd PreRun with args: %v\n", args)
        },
        Run: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside subCmd Run with args: %v\n", args)
        },
        PostRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside subCmd PostRun with args: %v\n", args)
        },
        PersistentPostRun: func(cmd *cobra.Command, args []string) {
            fmt.Printf("Inside subCmd PersistentPostRun with args: %v\n", args)
        },
    }

    rootCmd.AddCommand(subCmd)

    rootCmd.SetArgs([]string{""})
    _ = rootCmd.Execute()
    fmt.Print("\n")
    rootCmd.SetArgs([]string{"sub", "arg1", "arg2"})
    _ = rootCmd.Execute()
}








Generating markdown formatted documentation for your command

Cobra can generate a markdown formatted document based on the subcommands, flags, etc. A simple example of how to do this for your command can be found in Markdown Docs




Generating man pages for your command

Cobra can generate a man page based on the subcommands, flags, etc. A simple example of how to do this for your command can be found in Man Docs




Generating bash completions for your command

Cobra can generate a bash completions file. If you add more information to your command these completions can be amazingly powerful and flexible.  Read more about Bash Completions




Debugging

Cobra provides a ‘DebugFlags’ method on a command which when called will print
out everything Cobra knows about the flags for each command


Example

command.DebugFlags()










Release Notes


	0.9.0 June 17, 2014
	flags can appears anywhere in the args (provided they are unambiguous)

	–help prints usage screen for app or command

	Prefix matching for commands

	Cleaner looking help and usage output

	Extensive test suite





	0.8.0 Nov 5, 2013
	Reworked interface to remove commander completely

	Command now primary structure

	No initialization needed

	Usage & Help templates & functions definable at any level

	Updated Readme





	0.7.0 Sept 24, 2013
	Needs more eyes

	Test suite

	Support for automatic error messages

	Support for help command

	Support for printing to any io.Writer instead of os.Stderr

	Support for persistent flags which cascade down tree

	Ready for integration into Hugo





	0.1.0 Sept 3, 2013
	Implement first draft










ToDo


	Launch proper documentation site






Contributing


	Fork it

	Create your feature branch (git checkout -b my-new-feature)

	Commit your changes (git commit -am 'Add some feature')

	Push to the branch (git push origin my-new-feature)

	Create new Pull Request






Contributors

Names in no particular order:


	spf13 [https://github.com/spf13]






License

Cobra is released under the Apache 2.0 license. See LICENSE.txt [https://github.com/spf13/cobra/blob/master/LICENSE.txt]

[image: Bitdeli Badge] [https://bitdeli.com/free]







          

      

      

    

  

    
      
          
            
  
cast

Easy and safe casting from one type to another in Go

Don’t Panic! ... Cast


What is Cast?

Cast is a library to convert between different go types in a consistent and easy way.

Cast provides simple functions to easily convert a number to a string, an
interface into a bool, etc. Cast does this intelligently when an obvious
conversion is possible. It doesn’t make any attempts to guess what you meant,
for example you can only convert a string to an int when it is a string
representation of an int such as “8”. Cast was developed for use in
Hugo [http://hugo.spf13.com], a website engine which uses YAML, TOML or JSON
for meta data.




Why use Cast?

When working with dynamic data in Go you often need to cast or convert the data
from one type into another. Cast goes beyond just using type assertion (though
it uses that when possible) to provide a very straightforward and convenient
library.

If you are working with interfaces to handle things like dynamic content
you’ll need an easy way to convert an interface into a given type. This
is the library for you.

If you are taking in data from YAML, TOML or JSON or other formats which lack
full types, then Cast is the library for you.




Usage

Cast provides a handful of To_____ methods. These methods will always return
the desired type. If input is provided that will not convert to that type, the
0 or nil value for that type will be returned.

Cast also provides identical methods To_____E. These return the same result as
the To_____ methods, plus an additional error which tells you if it successfully
converted. Using these methods you can tell the difference between when the
input matched the zero value or when the conversion failed and the zero value
was returned.

The following examples are merely a sample of what is available. Please review
the code for a complete set.


Example ‘ToString’:

cast.ToString("mayonegg")         // "mayonegg"
cast.ToString(8)                  // "8"
cast.ToString(8.31)               // "8.31"
cast.ToString([]byte("one time")) // "one time"
cast.ToString(nil)                // ""

var foo interface{} = "one more time"
cast.ToString(foo)                // "one more time"








Example ‘ToInt’:

cast.ToInt(8)                  // 8
cast.ToInt(8.31)               // 8
cast.ToInt("8")                // 8
cast.ToInt(true)               // 1
cast.ToInt(false)              // 0

var eight interface{} = 8
cast.ToInt(eight)              // 8
cast.ToInt(nil)                // 0













          

      

      

    

  

    
      
          
            
  
viper [image: Build Status] [https://travis-ci.org/spf13/viper]

[image: Join the chat at https://gitter.im/spf13/viper] [https://gitter.im/spf13/viper?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Go configuration with fangs


What is Viper?

Viper is a complete configuration solution for go applications. It is designed
to work within an application, and can handle all types of configuration needs
and formats. It supports:


	setting defaults

	reading from JSON, TOML, and YAML config files

	reading from environment variables

	reading from remote config systems (Etcd or Consul), and watching changes

	reading from command line flags

	reading from buffer

	setting explicit values



Viper can be thought of as a registry for all of your applications
configuration needs.




Why Viper?

When building a modern application, you don’t want to worry about
configuration file formats; you want to focus on building awesome software.
Viper is here to help with that.

Viper does the following for you:


	Find, load, and unmarshal a configuration file in JSON, TOML, or YAML.

	Provide a mechanism to set default values for your different
configuration options.

	Provide a mechanism to set override values for options specified through
command line flags.

	Provide an alias system to easily rename parameters without breaking existing
code.

	Make it easy to tell the difference between when a user has provided a
command line or config file which is the same as the default.



Viper uses the following precedence order. Each item takes precedence over the
item below it:


	explicit call to Set

	flag

	env

	config

	key/value store

	default



Viper configuration keys are case insensitive.




Putting Values into Viper


Establishing Defaults

A good configuration system will support default values. A default value is not
required for a key, but it’s useful in the event that a key hasn’t be set via
config file, environment variable, remote configuration or flag.

Examples:

viper.SetDefault("ContentDir", "content")
viper.SetDefault("LayoutDir", "layouts")
viper.SetDefault("Taxonomies", map[string]string{"tag": "tags", "category": "categories"})








Reading Config Files

Viper requires minimal configuration so it knows where to look for config files.
Viper supports JSON, TOML and YAML files. Viper can search multiple paths, but
currently a single Viper instance only supports a single configuration file.

viper.SetConfigName("config") // name of config file (without extension)
viper.AddConfigPath("/etc/appname/")   // path to look for the config file in
viper.AddConfigPath("$HOME/.appname")  // call multiple times to add many search paths
err := viper.ReadInConfig() // Find and read the config file
if err != nil { // Handle errors reading the config file
    panic(fmt.Errorf("Fatal error config file: %s \n", err))
}








Reading Config from io.Reader

Viper predefines many configuration sources such as files, environment
variables, flags, and remote K/V store, but you are not bound to them. You can
also implement your own required configuration source and feed it to viper.

viper.SetConfigType("yaml") // or viper.SetConfigType("YAML")

// any approach to require this configuration into your program.
var yamlExample = []byte(`
Hacker: true
name: steve
hobbies:
- skateboarding
- snowboarding
- go
clothing:
  jacket: leather
  trousers: denim
age: 35
eyes : brown
beard: true
`)

viper.ReadConfig(bytes.NewBuffer(yamlExample))

viper.Get("name") // this would be "steve"








Setting Overrides

These could be from a command line flag, or from your own application logic.

viper.Set("Verbose", true)
viper.Set("LogFile", LogFile)








Registering and Using Aliases

Aliases permit a single value to be referenced by multiple keys

viper.RegisterAlias("loud", "Verbose")

viper.Set("verbose", true) // same result as next line
viper.Set("loud", true)   // same result as prior line

viper.GetBool("loud") // true
viper.GetBool("verbose") // true








Working with Environment Variables

Viper has full support for environment variables. This enables 12 factor
applications out of the box. There are four methods that exist to aid working
with ENV:


	AutomaticEnv()

	BindEnv(string...) : error

	SetEnvPrefix(string)

	SetEnvReplacer(string...) *strings.Replacer



When working with ENV variables, it’s important to recognize that Viper
treats ENV variables as case sensitive.

Viper provides a mechanism to try to ensure that ENV variables are unique. By
using SetEnvPrefix, you can tell Viper to use add a prefix while reading from
the environment variables. Both BindEnv and AutomaticEnv will use this
prefix.

BindEnv takes one or two parameters. The first parameter is the key name, the
second is the name of the environment variable. The name of the environment
variable is case sensitive. If the ENV variable name is not provided, then
Viper will automatically assume that the key name matches the ENV variable name,
but the ENV variable is IN ALL CAPS. When you explicitly provide the ENV
variable name, it does not automatically add the prefix.

One important thing to recognize when working with ENV variables is that the
value will be read each time it is accessed. Viper does not fix the value when
the BindEnv is called.

AutomaticEnv is a powerful helper especially when combined with
SetEnvPrefix. When called, Viper will check for an environment variable any
time a viper.Get request is made. It will apply the following rules. It will
check for a environment variable with a name matching the key uppercased and
prefixed with the EnvPrefix if set.

SetEnvReplacer allows you to use a strings.Replacer object to rewrite Env
keys to an extent. This is useful if you want to use - or something in your
Get() calls, but want your environmental variables to use _ delimiters. An
example of using it can be found in viper_test.go.


Env example

SetEnvPrefix("spf") // will be uppercased automatically
BindEnv("id")

os.Setenv("SPF_ID", "13") // typically done outside of the app

id := Get("id") // 13










Working with Flags

Viper has the ability to bind to flags. Specifically, Viper supports Pflags
as used in the Cobra [https://github.com/spf13/cobra] library.

Like BindEnv, the value is not set when the binding method is called, but when
it is accessed. This means you can bind as early as you want, even in an
init() function.

The BindPFlag() method provides this functionality.

Example:

serverCmd.Flags().Int("port", 1138, "Port to run Application server on")
viper.BindPFlag("port", serverCmd.Flags().Lookup("port"))








Remote Key/Value Store Support

To enable remote support in Viper, do a blank import of the viper/remote
package:

import _ github.com/spf13/viper/remote

Viper will read a config string (as JSON, TOML, or YAML) retrieved from a path
in a Key/Value store such as Etcd or Consul.  These values take precedence over
default values, but are overridden by configuration values retrieved from disk,
flags, or environment variables.

Viper uses crypt [https://github.com/xordataexchange/crypt] to retrieve
configuration from the K/V store, which means that you can store your
configuration values encrypted and have them automatically decrypted if you have
the correct gpg keyring.  Encryption is optional.

You can use remote configuration in conjunction with local configuration, or
independently of it.

crypt has a command-line helper that you can use to put configurations in your
K/V store. crypt defaults to etcd on http://127.0.0.1:4001.

$ go get github.com/xordataexchange/crypt/bin/crypt
$ crypt set -plaintext /config/hugo.json /Users/hugo/settings/config.json





Confirm that your value was set:

$ crypt get -plaintext /config/hugo.json





See the crypt documentation for examples of how to set encrypted values, or
how to use Consul.




Remote Key/Value Store Example - Unencrypted

viper.AddRemoteProvider("etcd", "http://127.0.0.1:4001","/config/hugo.json")
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
err := viper.ReadRemoteConfig()








Remote Key/Value Store Example - Encrypted

viper.AddSecureRemoteProvider("etcd","http://127.0.0.1:4001","/config/hugo.json","/etc/secrets/mykeyring.gpg")
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
err := viper.ReadRemoteConfig()








Watching Changes in Etcd - Unencrypted

// alternatively, you can create a new viper instance.
var runtime_viper = viper.New()

runtime_viper.AddRemoteProvider("etcd", "http://127.0.0.1:4001", "/config/hugo.yml")
runtime_viper.SetConfigType("yaml") // because there is no file extension in a stream of bytes

// read from remote config the first time.
err := runtime_viper.ReadRemoteConfig()

// unmarshal config
runtime_viper.Unmarshal(&runtime_conf)

// open a goroutine to wath remote changes forever
go func(){
    for {
        time.Sleep(time.Second * 5) // delay after each request
    
        // currenlty, only tested with etcd support
        err := runtime_viper.WatchRemoteConfig()
        if err != nil {
            log.Errorf("unable to read remote config: %v", err)
            continue
        }
    
        // unmarshal new config into our runtime config struct. you can also use channel 
        // to implement a signal to notify the system of the changes
        runtime_viper.Unmarshal(&runtime_conf)
    }
}()










Getting Values From Viper

In Viper, there are a few ways to get a value depending on the value’s type.
The following functions and methods exist:


	Get(key string) : interface{}

	GetBool(key string) : bool

	GetFloat64(key string) : float64

	GetInt(key string) : int

	GetString(key string) : string

	GetStringMap(key string) : map[string]interface{}

	GetStringMapString(key string) : map[string]string

	GetStringSlice(key string) : []string

	GetTime(key string) : time.Time

	GetDuration(key string) : time.Duration

	IsSet(key string) : bool



One important thing to recognize is that each Get function will return a zero
value if it’s not found. To check if a given key exists, the IsSet() method
has been provided.

Example:

viper.GetString("logfile") // case-insensitive Setting & Getting
if viper.GetBool("verbose") {
    fmt.Println("verbose enabled")
}






Accessing nested keys

The accessor methods also accept formatted paths to deeply nested keys. For
example, if the following JSON file is loaded:

{
    "host": {
        "address": "localhost",
        "port": 5799
    },
    "datastore": {
        "metric": {
            "host": "127.0.0.1",
            "port": 3099
        },
        "warehouse": {
            "host": "198.0.0.1",
            "port": 2112
        }
    }
}





Viper can access a nested field by passing a . delimited path of keys:

GetString("datastore.metric.host") // (returns "127.0.0.1")





This obeys the precedence rules established above; the search for the root key
(in this example, datastore) will cascade through the remaining configuration
registries until found. The search for the sub-keys (metric and host),
however, will not.

For example, if the metric key was not defined in the configuration loaded
from file, but was defined in the defaults, Viper would return the zero value.

On the other hand, if the primary key was not defined, Viper would go through
the remaining registries looking for it.

Lastly, if there exists a key that matches the delimited key path, its value
will be returned instead. E.g.

{
    "datastore.metric.host": "0.0.0.0",
    "host": {
        "address": "localhost",
        "port": 5799
    },
    "datastore": {
        "metric": {
            "host": "127.0.0.1",
            "port": 3099
        },
        "warehouse": {
            "host": "198.0.0.1",
            "port": 2112
        }
    }
}

GetString("datastore.metric.host") //returns "0.0.0.0"








Unmarshaling

You also have the option of Unmarshaling all or a specific value to a struct, map,
etc.

There are two methods to do this:


	Unmarshal(rawVal interface{}) : error

	UnmarshalKey(key string, rawVal interface{}) : error



Example:

type config struct {
    Port int
    Name string
}

var C config

err := Unmarshal(&C)
if err != nil {
    t.Fatalf("unable to decode into struct, %v", err)
}










Viper or Vipers?

Viper comes ready to use out of the box. There is no configuration or
initialization needed to begin using Viper. Since most applications will want
to use a single central repository for their configuration, the viper package
provides this. It is similar to a singleton.

In all of the examples above, they demonstrate using viper in it’s singleton
style approach.


Working with multiple vipers

You can also create many different vipers for use in your application. Each will
have it’s own unique set of configurations and values. Each can read from a
different config file, key value store, etc. All of the functions that viper
package supports are mirrored as methods on a viper.

Example:

x := viper.New()
y := viper.New()

x.SetDefault("ContentDir", "content")
y.SetDefault("ContentDir", "foobar")

//...





When working with multiple vipers, it is up to the user to keep track of the
different vipers.






Q & A

Q: Why not INI files?

A: Ini files are pretty awful. There’s no standard format, and they are hard to
validate. Viper is designed to work with JSON, TOML or YAML files. If someone
really wants to add this feature, I’d be happy to merge it. It’s easy to specify
which formats your application will permit.

Q: Why is it called “Viper”?

A: Viper is designed to be a companion [http://en.wikipedia.org/wiki/Viper_(G.I._Joe)]
to Cobra [https://github.com/spf13/cobra]. While both can operate completely
independently, together they make a powerful pair to handle much of your
application foundation needs.

Q: Why is it called “Cobra”?

A: Is there a better name for a commander [http://en.wikipedia.org/wiki/Cobra_Commander]?







          

      

      

    

  

    
      
          
            
  
Ledger Package

This package implements the ledger for Openchain which includes the blockchain and global state.

If you’re looking for API to work with the blockchain or state, look in ledger.go. This is the file where all public functions are exposed and is extensively documented. The sections in the file are:


Transaction-batch functions

These are functions that consensus should call. BeginTxBatch followed by CommitTxBatch or RollbackTxBatch. These functions will add a block to the blockchain with the specified transactions.




World-state functions

These functions are used to modify the global state. They would generally be called by the VM based on requests from chaincode.




Blockchain functions

These functions can be used to retrieve blocks/transactions from the blockchain or other information such as the blockchain size. Addition of blocks to the blockchain is done though the transaction-batch related functions.







          

      

      

    

  _static/file.png





_static/plus.png





_static/comment-bright.png





_static/minus.png





_static/up-pressed.png





_static/down.png





_static/comment-close.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_static/up.png





